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DESIGNING REALIZED KERNELS TO MEASURE THE EX POST
VARIATION OF EQUITY PRICES IN THE PRESENCE OF NOISE

BY OLE E. BARNDORFF-NIELSEN, PETER REINHARD HANSEN,
ASGER LUNDE, AND NEIL SHEPHARD1

This paper shows how to use realized kernels to carry out efficient feasible inference
on the ex post variation of underlying equity prices in the presence of simple models of
market frictions. The weights can be chosen to achieve the best possible rate of conver-
gence and to have an asymptotic variance which equals that of the maximum likelihood
estimator in the parametric version of this problem. Realized kernels can also be se-
lected to (i) be analyzed using endogenously spaced data such as that in data bases
on transactions, (ii) allow for market frictions which are endogenous, and (iii) allow
for temporally dependent noise. The finite sample performance of our estimators is
studied using simulation, while empirical work illustrates their use in practice.

KEYWORDS: Bipower variation, long-run variance estimator, market frictions,
quadratic variation, realized variance.

1. INTRODUCTION

IN THE LAST SIX YEARS the harnessing of high frequency financial data has
led to substantial improvements in our understanding of financial volatility.
The idea behind this is to use quadratic variation as a measure of the ex post
variation of asset prices. Estimators of increments of this quantity can allow us,
for example, to improve forecasts of future volatility and estimate parametric
models of time varying volatility. The most commonly used estimator of this
type is the realized variance (e.g., Andersen, Bollerslev, Diebold, and Labys
(2001), Meddahi (2002), Barndorff-Nielsen and Shephard (2002)), which the
recent econometric literature has shown has good properties when applied to
10 to 30 minute return data for frequently traded assets.

A weakness with realized variance is that it can be unacceptably sensitive to
market frictions when applied to returns recorded over shorter time intervals
such as 1 minute, or even more ambitiously, 1 second (e.g., Zhou (1996), Fang
(1996), Andersen, Bollerslev, Diebold, and Labys (2000)). In this paper we
study the class of realized kernel estimators of quadratic variation. We show
how to design these estimators to be robust to certain types of frictions and to
be efficient.
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land, Mark Podolskij, Joe Romano, George Tauchen, Lan Zhang, anonymous referees, and the
co-editor, Whitney Newey, for valuable comments. The Ox language of Doornik (2006) was used
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The problem of estimating the quadratic variation is, in some ways, simi-
lar to the estimation of the long-run variance in stationary time series. For
example, the realized variance is analogous to the sum-of-squares variance
estimator. The moving average filter of Andersen, Bollerslev, Diebold, and
Ebens (2001) and Hansen, Large, and Lunde (2008), and the autoregressive
filter of Bollen and Inder (2002) are estimators that use pre-whitening tech-
niques; see also Bandi and Russell (2008). Aït-Sahalia, Mykland, and Zhang
(2005) and Oomen (2005) proposed parametric estimators. The two scale es-
timator of Zhang, Mykland, and Aït-Sahalia (2005) was the first consistent
nonparametric estimator for stochastic volatility plus noise processes. It is re-
lated to the earlier work of Zhou (1996) on scaled Brownian motion plus
noise. The multiscale estimator of Zhang (2006) is more efficient than the
two scale estimator. An alternative is owing to Large (2005), whose alterna-
tion estimator applies when prices move by a sequence of single ticks. Fi-
nally, Delattre and Jacod (1997) studied the effect of rounding on realized
variances.

More formally, our interest will be in inference for the ex post variation of
log prices over some arbitrary fixed time period, such as a day, using estimators
of realized kernel type. To focus on the core issue, we represent this period as
the single interval [0� t]. For a continuous time log-price process X and time
gap δ > 0 our flat-top realized kernels take on the form

K(Xδ)= γ0(Xδ)+
H∑
h=1

k

(
h− 1
H

)
{γh(Xδ)+ γ−h(Xδ)}�

Here the nonstochastic k(x) for x ∈ [0�1] is a weight function and the hth
realized autocovariance is

γh(Xδ)=
n∑
j=1

(Xδj −Xδ(j−1))(Xδ(j−h) −Xδ(j−h−1))�

with h = −H� � � � �−1�0�1� � � � �H and n = �t/δ�. We will think of δ as be-
ing small and so Xδj −Xδ(j−1) represents the jth high frequency return, while
γ0(Xδ) is the realized variance ofX . Here K(Xδ)−γ0(Xδ) is the realized ker-
nel correction to realized variance for market frictions.

We show that if k(0) = 1, k(1) = 0, and H = c0n
2/3, then the resulting es-

timator is asymptotically mixed Gaussian, converging at rate n1/6. Here c0 is
an estimable constant which can be optimally chosen as a function of k—the
variance of the noise—and a function of the volatility path to minimize the
asymptotic variance of the estimator. The special case of a so-called flat-top
Bartlett kernel, where k(x)= 1 −x, is particularly interesting as its asymptotic
distribution is the same as that of the two scale estimator.
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When we additionally require that k′(0) = 0 and k′(1) = 0, then by tak-
ing H = c0n

1/2 the resulting estimator is asymptotically mixed Gaussian, con-
verging at rate n1/4, which we know is the fastest possible rate. When k(x) =
1 − 3x2 + 2x3 this estimator has the same asymptotic distribution as the multi-
scale estimator.

We use our novel realized kernel framework to make three innovations to
the literature: (i) we design a kernel to have an asymptotic variance which is
smaller than the multiscale estimator; (ii) we design K(Xδ) for data with en-
dogenously spaced data, such as that in data bases on transactions (see Renault
and Werker (2008) for the importance of this); (iii) we cover the case where
the market frictions are endogenous. All of these results are new and the last
two of them are essential from a practical perspective.

Clearly these realized kernels are related to so-called heteroskedastic au-
tocorrelation (HAC) estimators discussed by, for example, Gallant (1987),
Newey and West (1987), and Andrews (1991). The flat-top of the kernel,
where a unit weight is imposed on the first autocovariance, is related to
the flat-top literature initiated by Politis and Romano (1995) and Politis
(2005). However, the realized kernels are not scaled by the sample size, which
has a great number of technical implications and makes their analysis sub-
tle.

The econometric literature on realized kernels was started by Zhou (1996),
who proposed K(Xδ) with H = 1. This suffices for eliminating the bias caused
by frictions under a simple model for frictions where the population values of
higher-order autocovariances of the market frictions are zero. However, the
estimator is inconsistent. Hansen and Lunde (2006) used realized kernel type
estimators, with k(x)= 1 for generalH to characterize the second-order prop-
erties of market microstructure noise. Again these are inconsistent estimators.
Analysis of the finite sample performance of realized kernels is provided by
Bandi and Russell (2006).

In Section 2 we detail our notation and assumptions about the efficient price
process, market frictions, and realized kernels. In Section 3 we give a central
limit theory for γh(Xδ). Section 4 then looks at the corresponding properties
of realized kernels. Here we also analyze the realized kernels with an asymp-
totic scheme that takes the level of market frictions local to zero. In Section 5
we study the effect irregularly spaced data have on our theory and extend the
analysis of realized kernels to the case with jumps and the case where the noise
is temporally dependent and endogenous. Section 6 performs a Monte Carlo
experiment to assess the accuracy of our feasible central limit theory. In Sec-
tion 7 we apply the theory to some data taken from the New York Stock Ex-
change and in Section 8 we draw conclusions. Some intermediate results on
stable convergence is presented in Appendix A and a lengthy Appendix B de-
tails the proofs of the results given in the paper.
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2. NOTATION, DEFINITIONS, AND BACKGROUND

2.1. Semimartingales and Quadratic Variation

The fundamental theory of asset prices says that the log price at time t, Yt ,
must, in a frictionless arbitrage-free market, obey a semimartingale process
(written Y ∈ S M) on some filtered probability space (Ω�F� (Ft)t≥T ∗�P),
where T ∗ ≤ 0. Introductions to the economics and mathematics of semimartin-
gales are given in Back (1991) and Protter (2004). It is unusual to start the clock
of a semimartingale before time 0, but this raises no technical difficulty and
eases the exposition. We think of 0 as the start of an economic day; sometimes
it is useful to use data from the previous day. Alternatively we could define
γh(Xδ) as using data from time 0 to t by changing the range of the summation
to j =H + 1 and n−H and then scaling the resulting estimator. All the the-
oretical properties we discuss in this paper would then follow in the same way
as here.

Crucial to semimartingales and to the economics of financial risk is the
quadratic variation (QV) process of Y ∈ S M. This can be defined as

[Y ]t = plim
n→∞

tj≤t∑
j=1

(Ytj −Ytj−1)
2(1)

(e.g., Protter (2004, pp. 66–77) and Jacod and Shiryaev (2003, p. 51)) for any
sequence of deterministic partitions 0 = t0 < t1 < · · ·< tn = T with supj{tj+1 −
tj} → 0 for n → ∞. Discussion of the case of stochastic spacing {tj} will be
given in Section 5.3.

The most familiar semimartingales are of Brownian semimartingale type (Y ∈
B S M)

Yt =
∫ t

0
au du+

∫ t

0
σu dWu�(2)

where a is a predictable locally bounded drift, σ is a cadlag volatility process,
and W is a Brownian motion. This rules out jumps in Y , an issue addressed in
Section 5.6. For reviews of the econometrics of Y ∈ B S M see, for example,
Ghysels, Harvey, and Renault (1996) and Shephard (2005). If Y ∈ B S M, then

[Y ]t =
∫ t

0
σ2
u du�

In some of our asymptotic theory we also assume, for simplicity of exposition,
that

σt = σ0 +
∫ t

0
a#
u du+

∫ t

0
σ#
u dWu +

∫ t

0
v#
u dVu�(3)
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where a#, σ#, and v# are adapted cadlag processes, with a# also being pre-
dictable and locally bounded, and V is a Brownian motion independent of W .
Moreover, σ2 is assumed to be almost surely pathwise positive on every com-
pact interval. Much of what we do here can be extended to allow for jumps
in σ , following the details discussed in Barndorff-Nielsen, Graversen, Jacod,
and Shephard (2006), but we will not address that here.

2.2. Assumptions About Noise

We write the effects of market frictions as U , so that we observe the process

X = Y +U�(4)

and think of Y ∈ B S M as the efficient price. Our scientific interest will be in
estimating [Y ]t =

∫ t
0 σ

2
u du. In the main part of our work we will assume that

Y ⊥⊥ U , where, in general, A ⊥⊥ B denotes that A and B are independent.
From a market microstructure theory viewpoint this is a strong assumption
as one may expect U to be correlated with increments in Y (see, e.g., Kalnina
and Linton (2006)). However, the empirical work of Hansen and Lunde (2006)
suggests this independence assumption is not too damaging statistically when
we analyze data in thickly traded stocks recorded every minute. In Section 5.5
we will show that realized kernels are consistent when this assumption is re-
laxed.

Furthermore, we mostly work under a white noise assumption about the U
process (U ∈ W N ) which we assume has

E(Ut)= 0� Var(Ut)=ω2� Var(U2
t )= λ2ω4� Ut ⊥⊥Us

for any t� s�λ ∈R
+. This white noise assumption is unsatisfactory from a num-

ber of viewpoints (e.g., Phillips and Yu (2006) and Kalnina and Linton (2006)),
but is a useful starting point if we think of the market frictions as operat-
ing in tick time (e.g., Bandi and Russell (2005), Zhang, Mykland, and Aït-
Sahalia (2005), and Hansen and Lunde (2006)). A feature of U ∈ W N is that
[U]t = ∞. Thus U /∈ S M and so in a frictionless market would allow arbitrage
opportunities. Hence it only makes sense to add processes of this type when
there are frictions to be modelled. In Section 5.4 we will show that our kernel
can be made to be consistent when the white noise assumption is dropped. This
type of property has been achieved earlier by the two scale estimator of Aït-
Sahalia, Mykland, and Zhang (2006). Further, Section 4.7 provides a small-ω2

asymptotic analysis which provides an alternative prospective on the properties
of realized kernels.
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2.3. Defining the Realized Autocovariation Process

We measure returns over time spans of length δ. Define, for any processes
X and Z,

γh(Zδ�Xδ)=
n∑
j=1

(Zjδ −Z(j−1)δ)(X(j−h)δ −X(j−h−1)δ)�

h= −H� � � � �−1�0�1�2� � � � �H�

We call γh(Xδ)= γh(Xδ�Xδ) the realized autocovariation process, while not-
ing that

γh(Xδ)= γh(Yδ)+ γh(Yδ�Uδ)+ γh(Uδ�Yδ)+ γh(Uδ)�(5)

The daily increments of the realized QV, γ0(Xδ), are called realized vari-
ances; their square roots are called the realized volatilities. Realized volatility
has a very long history. It appears in, for example, Rosenberg (1972), Merton
(1980), and French, Schwert, and Stambaugh (1987), with Merton (1980) mak-
ing the implicit connection with the case where δ ↓ 0 in the pure scaled Brown-
ian motion plus drift case. For more general processes, a closer connection be-
tween realized QV and QV, and its use for econometric purposes, was made in
Andersen, Bollerslev, Diebold, and Labys (2001), Comte and Renault (1998),
and Barndorff-Nielsen and Shephard (2002).

2.4. Defining the Realized Kernel

We study the realized kernel

K(Xδ)= γ0(Xδ)+
H∑
h=1

k

(
h− 1
H

)
{γh(Xδ)+ γ−h(Xδ)}(6)

when k(0) = 1 and k(1) = 0, noting that K(Xδ) = K(Yδ) + K(Yδ�Uδ) +
K(Uδ�Yδ)+K(Uδ). Throughout we will write superscript  to denote a trans-
pose:

γ(Xδ)= {γ0(Xδ)�γ1(Xδ)+ γ−1(Xδ)� � � � � γH(Xδ)+ γ−H(Xδ)}�

γ(Yδ�Uδ)= (
γ0(Yδ�Uδ)�γ1(Yδ�Uδ)

+ γ−1(Yδ�Uδ)� � � � � γH(Yδ�Uδ)+ γ−H(Yδ�Uδ)
)
�

2.5. Maximum Likelihood Estimator of QV

To put nonparametric results in context, it is helpful to have a parametric
benchmark. In this subsection we recall the behavior of the maximum like-
lihood (ML) estimator of σ2 = [Y ]1 when Yt = σWt and where the noise is
Gaussian. All the results we state here are already known.
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Given Y ⊥⊥U and taking t = 1, it follows that⎛⎜⎜⎝
X1/n −X0

X2/n −X1/n
���

X1 −X(n−1)/n

⎞⎟⎟⎠∼N

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

0
0
���
0

⎞⎟⎟⎠ � σ2

n
I +

⎛⎜⎜⎝
2ω2 • • •
−ω2 2ω2 • •

0 −ω2 2ω2 •
���

� � �
� � �

� � �

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ �

Let σ̂2
ML and ω̂2

ML denote the ML estimators in this Gaussian model. Their
asymptotic properties are given from classical results about the MA(1) process.
By adopting the expression given in Aït-Sahalia, Mykland, and Zhang (2005,
Proposition 1) to our notation, we have that for ω2 > 0,{(

n1/4(σ̂2
ML − σ2)

n1/2(ω̂2
ML −ω2)

)}
L→N

{
0�
(

8ωσ3 0
0 2ω4

)}
�(7)

The slow rate of convergence of σ̂2
ML is a familiar result from the work of, for

example, Stein (1987) and Gloter and Jacod (2001a, 2001b).
Naturally, σ̂2

ML may be interpreted as a quasi maximum likelihood estimator
(QMLE) when the Gaussian model is misspecified. Interestingly, Aït-Sahalia,
Mykland, and Zhang (2005) have shown that the asymptotic distribution of
σ̂2

ML does not depend on the actual distribution of U . Hence, if U has a non-
Gaussian distribution, we continue to have n1/4(σ̂2

ML −σ2)
L→N(0�8ωσ3), even

though σ̂2
ML is derived under a Gaussian specification for U . So n1/4 is the

fastest possible rate of convergence unless additional assumptions are made
about the distribution of U . For example, if U is assumed to have a two
point distribution, it is then possible to recover the convergence rate of n1/2

by carrying out maximum likelihood estimation on this alternative parametric
model.

The special case where there is no market microstructure noise (i.e., the true
value of ω2 = 0) results in faster rates of convergence for σ̂2

ML, since n1/2(σ̂2
ML −

σ2)
L→ N(0�6σ4). When ω2 is also known a priori to be zero, and so is not

estimated, then

n1/2(σ̂2
ML − σ2)

L→N(0�2σ4)�(8)

2.6. Notation and Jittering

To simplify the exposition of some results, we redefine the price measure-
ments at the two endpoints,X0 andXt , to be an average ofm distinct observa-
tions in the intervals (−δ�δ) and (t − δ� t + δ), respectively. This jittering can
be used to eliminate end-effects that would otherwise appear in the asymptotic
variance ofK(Uδ), in some cases. The jittering does not affect consistency, rate
of convergence, or the asymptotic results concerning K(Yδ) and K(Yδ�Uδ).
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In the following discussion we consider kernel weight functions, k(x), that
are two times continuously differentiable on [0�1], and define

k0�0
• =

∫ 1

0
k(x)2 dx� k1�1

• =
∫ 1

0
k′(x)2 dx� k2�2

• =
∫ 1

0
k′′(x)2 dx�(9)

where we, as usual, write derivatives using primes. The kernels for which
k′(0)2 +k′(1)2 = 0 are particularly interesting in this context, and we shall refer
to this class of kernels as smooth kernels.

3. CENTRAL LIMIT THEORY FOR γ(Xδ)

Readers uninterested in the background theory of realized kernels can skip
this section and go immediately to Section 4.

3.1. Background Result

Here we will study the large sample behavior of the contributions to γ(Xδ).
These results will be used in the proofs of the next section’s results on the
properties of K(Xδ) and so to select k to produce good estimators of [Y ].
Throughout this paper

LY→ will denote convergence in law stably with respect
to the σ-field, σ(Y), generated by the process Y , a type of convergence which
will be discussed in the next subsection.

THEOREM 1: Suppose that Y ∈ B S M with σ of the form (3) and that U ∈
W N with U ⊥⊥ Y . Let

Γδ�H =
(
γ0(Yδ)−

∫ t

0
σ2
u du�

γ1(Yδ)+ γ−1(Yδ)� � � � � γH(Yδ)+ γ−H(Yδ)

)

�

As n→ ∞, the random variates

δ−1/2Γδ�H� γ(Yδ�Uδ)+ γ(Uδ�Yδ)� δ1/2{γ(Uδ)−Eγ(Uδ)}
converge jointly in law and σ(Y)-stably. The limiting laws are

δ−1/2Γδ�H
LY→ MN

(
0�2

∫ t

0
σ4
u du×A

)
� A= diag(1�2� � � � �2)�

where MN denotes a mixed normal distribution; γ(Yδ�Uδ) + γ(Uδ�Yδ)
LY→

MN(0�8ω2[Y ]B), where B is a (H + 1)× (H + 1) symmetric matrix with block
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structure

B=
(
B11 B12

B21 B22

)
� B11 =

(
1 •

−1 2

)
�

B21 =

⎛⎜⎜⎝
0 −1
0 0
���

���
0 0

⎞⎟⎟⎠ � B22 =

⎛⎜⎜⎝
2 • • •

−1 2 • •
� � �

� � �
� � � •

· · · 0 −1 2

⎞⎟⎟⎠ �
B12 = B

21; and

E{γ(Uδ)} = 2ω2n(1�−1�0�0� � � � �0)�

Cov{γ(Uδ)} = 4ω4(nC +D+m−1E)�

where C , D, and E are symmetric (H + 1)× (H + 1) matrices; C with the block
structure:

C11 =
(

1 + λ2 •
−2 − λ2 5 + λ2

)
�

C21 =
⎛⎜⎝1 −4

0 1
0 0
0 0

⎞⎟⎠ � C22 =

⎛⎜⎜⎝
6 • • •

−4 6 • •
1 −4 6 •
0

� � �
� � �

� � �

⎞⎟⎟⎠ �
where C12 = C

21;

D=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λ2 − 2 • • • • •
λ2 + 4 −λ2 − 21

2 • • • •
− 4

2 9 −15 • • •
0 − 5

2 11 −18 • •
���

� � �
� � �

� � �
� � �

���

0 0 0 −H+2
2 2H + 5 −3(H + 3)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
;

and E with the block structure: E12 =E
21,

E11 =
⎛⎝ λ2

2 +(m−1)

m2 + 2 •
− λ2

2 +(m−1)

m2 − 3
λ2
2 +(m−1)

m2 + 7

⎞⎠ � E21 =

⎛⎜⎜⎝
1 −5
0 1
0 0
���

���

⎞⎟⎟⎠ �



1490 BARNDORFF-NIELSEN, HANSEN, LUNDE, AND SHEPHARD

E22 =

⎛⎜⎜⎜⎝
8 • • · · ·

−5 8 • � � �

0 −5 8
� � �

���
� � �

� � �
� � �

⎞⎟⎟⎟⎠ �

Finally, n−1/2{γ(Uδ)− Eγ(Uδ)} L→N(0�4ω4C).

Using γh(Uδ)+ γ−h(Uδ) in the construction of our realized kernels, rather
than 2γh(Uδ), say, is essential for obtaining a consistent estimator. The ex-
planation is simple. Part of the realized variance, γ0(Uδ), is given by U2

0 +
2
∑n−1

j=1 U
2
δj +U2

t , and the corresponding terms in γ1(Uδ) and γ−1(Uδ) are given
by U2

0 +∑n−1
j=1 U

2
δj and

∑n−1
j=1 U

2
δj +U2

t , respectively. So both γ1(Uδ) and γ−1(Uδ)

are needed to eliminate the two end-terms, U2
0 and U2

t , because these terms do
not appear in γh(Uδ) for |h| ≥ 2.

3.2. Comments

3.2.1. Stable Convergence

The concept and role of stable convergence may be unfamiliar to some read-
ers and we therefore add some words of explanation. The formal definition of
stable convergence (given in Appendix A) conceals a key property of stable
convergence, which is a useful joint convergence. Let Yn denote a random vari-
ate on (Ω�F�P) and let G be a sub-σ-field of F . Yn converges G -stably in law
to Y , written Yn

LG→ Y , if and only if (Yn�Z)
L→ (Y�Z) for all G -measurable

random variables Z and some random variate Y . When G = σ(X) we will
write

LX→ in place of
LG→.

Consider the simple example where

Yn = δ−1/2

(
γ0(Yδ)−

∫ t

0
σ2
u du

)
LY→ MN(0�2Z) and Z =

∫ t

0
σ4
u du�(10)

Our focus is on Yn/
√
Z, and if Z is G -measurable, then convergence G -stably

in law implies that

δ−1/2

(
γ0(Yδ)−

∫ t

0
σ2
u du

)/√∫ t

0
σ4
u du

L→N(0�2)�(11)

a result that cannot be deduced from the convergence in law to a mixed
Gaussian variable in (10) without stable convergence.
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3.2.2. Related Results

The asymptotic distribution (10) appears in Jacod (1994), Jacod and Protter
(1998), and Barndorff-Nielsen and Shephard (2002). This estimator has the ef-
ficiency of the ML estimator (8) in the pure Brownian motion case. The exten-
sion of the limiting results to deal with more general realized autocovariances
is new. The first part of Theorem 1 implies that the simple kernel

δ−1/2

(
γ0(Yδ)+ γ1(Yδ)+ γ−1(Yδ)−

∫ t

0
σ2
u du

)
LY→ MN

(
0�6

∫ t

0
σ4
u du

)
�

in the no-noise case. This increases the asymptotic variance by a factor of 3
relative to that in (10). So in the absence of noise, there will be no gains from
realized kernels.

The main impact of the noise is through the γ(Uδ) term. The mean and
variance of γ0(Uδ) was studied by, for example, Fang (1996), Bandi and Russell
(2005), and Zhang, Mykland, and Aït-Sahalia (2005). Note that both the mean
and variance of γ0(Uδ) explode as n→ ∞. Of course these features are passed
onto γ0(Xδ), making it inconsistent, thus motivating this literature. The bias
of γ0(Uδ) is exactly balanced by that of γ1(Uδ) + γ−1(Uδ), so producing the
asymptotically unbiased but inconsistent estimator γ0(Xδ)+γ1(Xδ)+γ−1(Xδ)
with (e.g., Zhou (1996)) E{γ0(Uδ)+ γ1(Uδ)+ γ−1(Uδ)} = 0 and Var{γ0(Uδ)+
γ1(Uδ)+ γ−1(Uδ)} = 4ω4(2n− 1�5).

The higher-order autocovariances, h ≥ 2, are noisy estimates of zero as
E{γh(Uδ)+ γ−h(Uδ)} = 0 and Var{γh(Uδ)+ γ−h(Uδ)} ∝ n. Yet including them
can reduce the variance, and this is essential for obtaining a consistent estima-
tor. Thus the higher-order autocovariances play the role of control variables
(e.g., Ripley (1987, p.118)). For example, one can show that Var{K(Uδ)} �
(n/H2)8ω4 when the Bartlett kernel is employed, and this shows that increas-
ing H with n makes it possible to reduce the variance induced by the noise.

The structure of the matrices, A, B, C, D, and E, is key for the asymptotic
properties of our realized kernel, and we have the following result.

THEOREM 2: Write w= (1�1�k( 1
H
)� � � � �k(H−1

H
)). Then as H increases,

wAw= 2Hk0�0
• +O(1)�

wBw=H−1k1�1
• +O(H−2)�

wCw=
{
H−2{k′(0)2 + k′(1)2} +O(H−3)� if k′(0)2 + k′(1)2 �= 0,
H−3k2�2

• +O(H−4)� if k′(0)2 + k′(1)2 = 0,

wDw= −H−1 1
2
k′(1)2 +O(H−2)�
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wEw=H−1k1�1
• +O(H−2)�

It may be interesting to note that the Bartlett kernel minimizes wBw while
the cubic kernel function, k(x)= 1 − 3x2 + 2x3, minimizes the asymptotic con-
tribution from wCw.

4. BEHAVIOR OF KERNELS

4.1. Core Result

In this section we derive the asymptotic behavior of arbitrary realized ker-
nels. In Section 4.3 we derive a way to choose the number of terms to use in
the kernel, which is indexed by ω2 and

∫ t
0 σ

4
u du. Subsequently, we provide esti-

mators of these quantities, implying the feasible asymptotic distribution of the
realized kernel can be applied in practice to form confidence intervals for [Y ].

Recalling the definition of k0�0
• , k1�1

• , and k2�2
• in (9) we have the following

result.

THEOREM 3: As n�H → ∞ and H/n→ 0,√
n

H

{
K(Yδ)−

∫ t

0
σ2
u du

}
LY→ MN

(
0�4k0�0

• t
∫ t

0
σ4
u du

)
�

√
H{K(Yδ�Uδ)+K(Uδ�Yδ)} LY→ MN

(
0�k1�1

• 8ω2

∫ t

0
σ2
u du

)
�√

H2

n
{K(Uδ)} L→N

[
0�4ω4{k′(0)2 + k′(1)2}]�

When k′(0)2 +k′(1)2 = 0, the asymptotic variance ofK(Uδ) is 4ω4((n/H3)k2�2
• +

(1/Hm)k1�1
• ) and√
H3

n
{K(Uδ)} L→N(0�4ω4k2�2

• ) if H2/(mn)→ 0�

It is useful to define

ξ2 =ω2
/√
t

∫ t

0
σ4
u du and ρ=

∫ t

0
σ2
u du

/√
t

∫ t

0
σ4
u du

to be a noise-to-signal ratio and a measure of heteroskedasticity, respec-
tively. Note that ρ = 1 corresponds to the case with constant volatility and,
by Cauchy–Schwarz inequality, we have ρ≤ 1. It is worth noting that the proof
of Theorem 3 can be adapted to the case where {Ujδ} is heteroskedastic. This
will only affect the terms in the asymptotic variance that involve ω4.
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The large n and large H asymptotic variance of K(Xδ)− ∫ t
0 σ

2
u du is

4t
∫ t

0
σ4
u du(12)

×
[
H

n
k0�0

• + 2
k1�1

•
H
ρξ2 + n

{
k′(0)2 + k′(1)2

H2
+ k2�2

•
H3

}
ξ4 + k1�1

•
Hm

ξ4

]
�

If we now relate H to n, we see that k′(0)2 + k′(1)2 = 0 is an important special
case. This is spelled out in the following theorem.

THEOREM 4: When H = c0n
2/3, we have

n1/6

{
K(Xδ)−

∫ t

0
σ2
u du

}
(13)

LY→ MN
(

0�4t
∫ t

0
σ4
u du

[
c0k

0�0
• + c−2

0 {k′(0)2 + k′(1)2}ξ4
])
�

When k′(0)2 + k′(1)2 = 0, m→ ∞, and H = c0n
1/2, we have

n1/4

{
K(Xδ)−

∫ t

0
σ2
u du

}
(14)

LY→ MN
{

0�4t
∫ t

0
σ4
u du(c0k

0�0
• + c−1

0 2k1�1
• ρξ

2 + c−3
0 k

2�2
• ξ

4)

}
�

The result (14) is interesting because we have seen, in (7), that this is the
best rate of convergence that can be achieved for this problem.

The requirement thatm→ ∞ for the result (14) is due to end-effects. When
m is fixed, an additional term appears in the asymptotic variance. Its relative
contribution to the asymptotic variance is proportional to ξ2/m. In our em-
pirical analysis, we find ξ2 to be quite small, about 10−3, so the last term can
reasonably be ignored even when m= 1. This argument will be spelled out in
Section 4.7 where we consider a small-ω2 asymptotic scheme. Under the al-
ternative asymptotic experiment, this term vanishes at a sufficiently fast rate
without the need to “jitter” the end-points.

4.2. Special Cases With n1/6

When H = c(ξ2n)2/3 we have the asymptotic distribution given in (13) by
setting c0 = cξ4/3. For this class of kernels the value of c which minimizes the
asymptotic variance in (13) is

c∗ = [
2{k′(0)2 + k′(1)2}/k0�0

•
]1/3
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TABLE I

PROPERTIES OF SOME n1/6 FLAT-TOP REALIZED KERNELS

k(x) k′(0) k′(1) k
0�0• k

1�1• k
2�2• c∗ ck

0�0•

Bartlett 1 − x −1 −1 1
3 1 0 2�28 0�76

2nd order 1 − 2x+ x2 −2 0 1
5

4
3 4 3�42 0�68

Epanechnikov 1 − x2 0 −2 8
15

4
3 4 2�46 1�31

aThe Bartlett kernel has the same asymptotic distribution as the two scale estimator. In the last column, c∗k0�0•
measures the relative asymptotic efficiency of the realized kernels in this class.

and the lower bound for the asymptotic variance is

4c∗ω4/3

(
t

∫ t

0
σ4
u du

)2/3[
k0�0

• + c∗−3{k′(0)2 + k′(1)2}](15)

= 6c∗k0�0
• ω

4/3

(
t

∫ t

0
σ4
u du

)2/3

�

Hence c∗k0�0
• controls the asymptotic efficiency of estimators in this class.

Three flat-top cases of this setup are analyzed in Table I. The flat-top Bartlett
kernel puts k(x) = 1 − x, the Epanechnikov kernel puts k(x) = 1 − x2, while
the second-order kernel has k(x) = 1 − 2x + x2. The Bartlett kernel has the
same asymptotic distribution as the two scale estimator. It is more efficient
than the Epanechnikov kernel, but less good than the second-order kernel.

4.3. Special Cases With n1/4

When H = cξ
√
n and m→ ∞, the asymptotic variance in (14) is propor-

tional to

4t
∫ t

0
σ4
u du(ck

0�0
• ξ+ 2c−1k1�1

• ρξ+ c−3k2�2
• ξ)

=ω
(
t

∫ t

0
σ4
u du

)3/4

4(ck0�0
• + 2c−1ρk1�1

• + c−3k2�2
• )︸ ︷︷ ︸

g(c)

�

To determine the c that minimizes the asymptotic variance we simply minimize
g(c). Writing x = c2 the first-order condition is k0�0

• x
2 − 2ρk1�1

• x − 3k2�2
• = 0.

Taking the square root of the positive root yields

c∗ =
√√√√ρk1�1•

k0�0•

{
1 +

√
1 + 3d

ρ

}
� where d = k0�0

• k
2�2
•

(k1�1• )2
�(16)
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With the optimal value for c, the asymptotic variance can be expressed as g×
ω(t

∫ t
0 σ

4
u du)

3/4, where

g= g(c∗)= 16
3

√
ρk0�0• k1�1•

{
1√

1 +√
1 + 3d/ρ

+
√√√√1 +

√
1 + 3d

ρ

}
�

From the properties of the maximum likelihood estimator, (7), in the paramet-
ric version of the problem, ρ= 1, we should expect that g ≥ 8. It can be shown
that g increases as ρ decreases, so in the heteroskedastic case, ρ < 1, we should
expect g > 8.

Eight flat-top cases of this setup are analyzed in Table II, and four kernel
functions are plotted in Figure 1. The first is derived by thinking of a cubic ker-
nel k(x)= 1+a1x+a2x

2 +a3x
3, where a1� a2� a3 are constants. We can choose

a1� a2� a3 by imposing the conditions k′(0)2 +k′(1)2 = 0, and that k(0)= 1 and
k(1)= 0. The resulting cubic kernel has k(x)= 1 − 3x2 + 2x3, which has some
of the features of cardinal cubic splines (e.g., Park and Schowengerdt (1983))
and quadratic mother kernels (e.g., Phillips, Sun, and Jin (2003)). As stated
earlier, the cubic kernel minimizes k2�2

• within the class of smooth kernels, thus
in general we have k2�2

• ≥ 12. It is noteworthy that the realized kernel based
on the cubic kernel has the same asymptotic distribution as the multiscale esti-
mator. Naturally, minimizing k2�2

• need not minimize g, and a well known ker-
nel that has a smaller asymptotic variance is the flat-top Parzen kernel, which

TABLE II

PROPERTIES OF SOME n1/4 FLAT-TOP REALIZED KERNELSa

k(x) k
0�0• k

1�1• k
2�2• c∗ g

Cubic kernel 1 − 3x2 + 2x3 0�371 1�20 12�0 3�68 9�04
5th order kernel 1 − 10x3 + 15x4 − 6x5 0�391 1�42 17�1 3�70 10�2
6th order kernel 1 − 15x4 + 24x5 − 10x6 0�471 1�55 22�8 3�97 12�1
7th order kernel 1 − 21x5 + 35x6 − 15x7 0�533 1�71 31�8 4�11 13�9
8th order kernel 1 − 28x6 + 48x7 − 21x8 0�582 1�87 43�8 4�31 15�7

Parzen
{

1 − 6x2 + 6x3� 0 ≤ x≤ 1/2
2(1 − x)3� 1/2 ≤ x≤ 1

0�269 1�50 24�0 4�77 8�54

Tukey–Hanning1 sin2{π/2(1 − x)} 0�375 1�23 12�1 3�70 9�18
Tukey–Hanning2 sin2{π/2(1 − x)2} 0�219 1�71 41�7 5�74 8�29
Tukey–Hanning5 sin2{π/2(1 − x)5} 0�097 3�50 489�0 8�07 8�07
Tukey–Hanning16 sin2{π/2(1 − x)16} 0�032 10�26 14374�0 39�16 8�02

aThe cubic kernel has the same asymptotic distribution as the multiscale estimator. g is computed for the case
ρ = 1 and measures the relative asymptotic efficiency of the realized kernels in this class—8 being the parametric
efficiency bound.
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FIGURE 1.—Kernel functions, k(x/c∗), scaled by their respective c∗ to make them comparable.

places

k(x)=
{

1 − 6x2 + 6x3� 0 ≤ x≤ 1/2,
2(1 − x)3� 1/2 ≤ x≤ 1.

We also consider the flat-top Tukey–Hanningp kernel, defined by

k(x)= sin2
{
π

2
(1 − x)p

}
�(17)

We call this the modified Tukey–Hanning kernel because the case p= 1, where
sin2{π/2(1 − x)} = {1 + cos(πx)}/2, corresponds to the usual Tukey–Hanning
kernel.

Table II shows that the performance of the Tukey–Hanning1 kernel is almost
identical to that of the cubic kernel. The Parzen kernel outperforms the cubic
kernel, but is not as good as the modified Tukey–Hanning kernel, (17), when
p ≥ 2. While none of the standard kernels reaches the parametric efficiency
bound, we see that the modified Tukey–Hanning kernel approaches the lower
bound as we increase p. This kernel utilizes more lags as p increases, and later
we will relax the requirement that k(1)= 0 and consider kernels that utilize all
lags, such as the quadratic spectral kernel (see, e.g., Andrews (1991)).

4.4. Finite Sample Behavior

It is important to ask whether the approximation suggested by Theorem 3
and our special cases thereof provides a useful guide to finite sample behavior.
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Table III gives

gn = Var{n1/4K(Xδ)}ω−1

(
t

∫ t

0
σ4
u du

)−3/4

listed against n for the case where ρ= 1. An empirically realistic value for ξ2

is around 0.001 for the types of data we study later in this paper. The table
also includes results for an optimal selection of weights that were computed
numerically.2 More generally the table shows that the asymptotics provide a
good approximation to the finite sample case, especially when n is over 1,000
and when ξ2 is moderate to large. The table also shows that even though the
Bartlett kernel converges at the slow n1/6 rate, it is only mildly inefficient even
when n is 4,000. When ξ2 is small the asymptotic expressions provide a poor
approximation in all cases unless n is 4,000 or so.3 Of course, in that case the

TABLE III

FLAT-TOP REALIZED KERNELSa

n Opt. TH2 Par Cubic Bart Opt. TH2 Par Cubic Bart

ξ2 = 0�1 ξ2 = 0�01

256 8�52 9�11 9�39 9�60 10�7 9�63 10�6 10�8 10�7 10�6
1,024 8�30 8�76 9�03 9�37 11�9 8�73 9�43 9�73 9�81 10�3
4,096 8�19 8�58 8�85 9�26 13�9 8�34 8�86 9�13 9�40 10�9

16,384 8�14 8�49 8�76 9�21 16�8 8�17 8�58 8�84 9�22 12�5
65,536 8�12 8�45 8�71 9�19 20�6 8�08 8�44 8�70 9�13 14�8

1,048,576 8�10 8�41 8�68 9�17 31�9 8�02 8�33 8�59 9�07 22�2
∞ 8�00 8�29 8�54 9�04 ∞ 8�00 8�29 8�54 9�04 ∞

ξ2 = 0�001 ξ2 = 0�0001

256 15�1 15�4 16�2 16�1 16�9 38�7 38�8 38�8 38�8 38�8
1,024 10�8 11�8 12�1 12�1 11�7 21�0 21�1 21�2 23�2 21�5
4,096 9�22 10�0 10�3 10�4 10�5 13�2 14�0 15�0 14�9 14�0

16,384 8�55 9�19 9�47 9�61 10�4 10�1 11�1 11�6 11�3 11�0
65,536 8�26 8�73 9�00 9�31 11�3 8�93 9�69 10�0 10�0 10�2

1,048,576 8�06 8�40 8�66 9�10 15�8 8�20 8�64 8�90 9�25 11�9
∞ 8�00 8�29 8�54 9�04 ∞ 8�00 8�29 8�54 9�04 ∞

aVar{n1/4K(Xδ)}ω−1(t
∫ t

0 σ
4
u du)

−3/4 listed against n. Asymptotic lower bound is 8. “Opt.” refers to kernel
weights that were selected numerically to minimize the finite sample variance of a flat-top realized kernel. “Cubic”
refers to k(x)= 1 − 3x2 + 2x3. “TH2” denotes the modified Tukey–Hanning with p= 2; see (17).

2The weights were computed as w∗ = (1�1� v)′ where v = −(n−1A22 + 2ξ2ρB22 +
nξ4C22)

−1(2ξ2ρB21 + nξ4C21)(1�1)′. The matrices A22, B22, C22, B21, and C21 are given in The-
orem 1. These weights will, as H → ∞, converge to those of the optimal kernel function that will
be introduced in the next section.

3See Bandi and Russell (2006) for an analysis and comparison of the finite sample properties
of a variety of estimators including the realised kernels.
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realized kernels are quite precise as the asymptotic variance is proportional to
ξ. Relatively small values for ξ2 and n result in small values for H, and this ex-
plains that the asymptotic approximation is poor in this situation. The reason
is that the asymptotic approximations of Theorem 2, such as wBw�H−1k1�1

• ,
are inaccurate when H is small. So in our simulations and empirical analysis
we compute the variance ofK(Xδ) using the matrix expressions directly, rather
than the asymptotic expressions of Theorem 2. This greatly improves the finite
sample behavior of confidence interval and related quantities that depend on
an estimate of the asymptotic variance. Given the simple structure of the ma-
trices, this is not computationally burdensome even for large values of H.

The rest of this section generalizes the theory in various directions and can
be skipped during a first reading of the paper.

4.5. Realized Kernels With Infinite Lags

If we extend the kernel function beyond the unit interval and set k(x) = 0
for x≥ 1, then the realized kernels can be expressed as

K(Xδ)= γ0(Xδ)+
n−1∑
h=1

k

(
h− 1
H

)
{γh(Xδ)+ γ−h(Xδ)}�(18)

as all autocovariance of orders higher than H are assigned zero weight. Here
we consider kernels that need not have k(x) = 0 for x > 1. Such kernels can
potentially assign nonzero weight to all autocovariances.4 So we replace the
requirement “k(x)= 0 for x > 1” with “k(x)→ 0 as x→ ∞ and k(x) is twice
differentiable on [0�∞).” An inspection of our proofs reveals that such kernels
can be accommodated by our results with minor modifications. Not surpris-
ingly, we still need k′(0)= 0 to achieve the fast rate of convergence and need
to redefine k0�0

• , k1�1
• , and k2�2

• to represent integrals over the whole positive
axis, for example, k0�0

• = ∫ ∞
0 k(x)2 dx. We have the following optimality result

within the class of realized kernels defined by (18).

PROPOSITION 1—Optimal Kernel Function: The infinite-lag realized kernel
with H∗ = ξn1/2 and

k(x)= (1 + x)e−x(19)

achieves the parametric efficiency bound.

We will refer to k(x) = (1 + x)e−x as the optimal kernel function. Proposi-
tion 1 shows that the realized kernel based on (19) is asymptotically first-order
equivalent to the maximum likelihood estimator in the parametric version of
the problem. That is, when σ2

u = σ2 (constant volatility) they both have the

4It is only necessary to compute the first H̃ realised autocovariances for some H̃ with H/H̃ =
o(1) because k(x)→ 0 exponentially fast as x→ ∞.
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FIGURE 2.—Kernel functions, k(x/c∗), scaled by their respective c∗ to make them comparable.

asymptotic variance 8ωσ3 (see (7)) and they both converge at rate n1/4. An
elegant feature of this kernel function, k(x) = (1 + x)e−x, is that its optimal
bandwidth is simply H∗ = ξn1/2. So c∗ = 1 for this kernel function. The proof
of Proposition 1 (given in the Appendix) essentially amounts to solving a cal-
culus of variation problem.

Five kernel functions for infinite-lag realized kernels are shown in Figure 2
and key statistics for these kernels functions are given in Table IV: first, the
optimal kernel which achieves the parametric lower bound; second, the Tukey–
Hanning∞ kernel that is given as the limit of (17) as p→ ∞ (this kernel is very
similar to the optimal kernel); third, the quadratic-spectral kernel. The last
two kernels are related to the Fourier-based estimators that have been used
in this literature; see Malliavin and Mancino (2002). The Fourier estimator by
Malliavin and Mancino (2002) is closely related to the realized kernel using
the Dirichlet kernel weights,

kN(z)= 1
2N + 1

sin
((
N + 1

2

)
z

)
sin
(

1
2
z

) → k(x)

= sin(x)
x

as N → ∞� x=
(
N + 1

2

)
z�
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TABLE IV

PROPERTIES OF SOME n1/4 FLAT-TOP INFINITE-LAG REALIZED KERNELSa

k(x) k
0�0• k

1�1• k
2�2• c∗ g

Optimal (1 + x)e−x 5
4

1
4

1
4 1.0000 8�0000

Tukey–Hanning∞ sin2{ π2 exp(−x)} 0.52 π2

16
π2(1+π2)

32 2.3970 8�0124

Quadratic spectral 3
x2 (

sinx
x

− cosx) 3π
5

3π
35

π
35 0.7395 9�3766

Dirichlet∞ sinx
x

π
2

π
6

π
10 1.0847 11�662

Fejér ( sinx
x
)2 π

3
2π
15

16π
105 1.2797 8�8927

aThe g measures the relative asymptotic efficiency of the realized kernels in this class—8 being the parametric
efficiency bound.

Mancino and Sanfelici (2007) introduced another variant of the Fourier esti-
mator, which also has a realized kernel representation. The implied asymptotic
weights for this estimator are given by the Fejér kernel: k(x)= sin2(x)/x2.

A practical drawback of infinite-lag realized kernels is that they require a
very large number of out-of-period intraday returns. The reason is that the
hth autocovariance estimator needs h intraday returns before time 0 and af-
ter time t. Because the gains in precision from these estimators is relatively
small, we will not utilize these “infinite-lag” estimators in our simulations and
empirical analysis.

4.6. Non-Flat-Top Kernels

The flat-top constraint is imposed on these kernels to eliminate the bias
caused by frictions. If we remove the flat-top constraint, then the realized ker-
nel becomes

K̄(Xδ)= γ0(Xδ)+
H∑
h=1

k

(
h

H

)
{γh(Xδ)+ γ−h(Xδ)}�

where we assume k(0)= 1 and k(1)= 0. Now we have E{K(Uδ)} = 2ω2n{1 −
k( 1

H
)} and the bias is proportional to (n/H)k′(0)+(n/H2)k′′(0)/2+O(n/H3).

So the bias in the Bartlett case k(x) = 1 − x is O(n/H) = O(n1/3), and in
the cubic case it is O(n/H2) = O(1), which is better but not satisfactory. To
remove the flat-top condition we need a kernel which is flatter to a higher
order near zero, so the bias becomes negligible. For this we add the ad-
ditional constraint that k′′(0) = k′′(1) = 0. Simple polynomials of this type,
k(x)= 1 + axj + bxj+1 + cxj+2, j = 3�4� � � � � yield c = −(j+ j2)/2, b= 2j+ j2,
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and a= −1 − 3j/2 − j2/2. Examples of this include

k(x)=

⎧⎪⎪⎨⎪⎪⎩
1 − 10x3 + 15x4 − 6x5� j = 3,
1 − 15x4 + 24x5 − 10x6� j = 4,
1 − 21x5 + 35x6 − 15x7� j = 5,
1 − 28x6 + 48x7 − 21x8� j = 6.

(20)

The bias of these estimators is O(n/Hj) = O(n−(j−2)/2), which has no impact
on its asymptotic distribution when j ≥ 3 and should become more robust in
finite samples as j increases. We call the jth case the (j + 2)th order kernel.
Table II shows that these estimators are less efficient than the realized kernels
produced by (17).

Table V shows the corresponding finite sample behavior for some jth order
realized kernels. In addition to the scaled variance, we also report the scaled
squared bias[

n1/4E
{
K̄(Xδ)−

∫ t

0
σ2
u du

}]2

ω

(∫ t

0
σ4
u du

)3/4 = 4n5/2ξ3

{
1 − k

(
1

cξn1/2

)}2

�

Table V shows that the bias is small when ξ2 is large and so does not create
a distortion for the inference procedure for this realized kernel. However, for
small ω2 the bias dramatically swamps the variance and so inference would be
significantly affected.

4.7. Small-ω2 Asymptotic Analysis

Given that ω2 is estimated to be small relative to the integrated variance,∫ t
0 σ

2
u du, it becomes interesting to analyze the realized kernels with an asymp-

totic scheme that takesω2 to be local to zero. Specifically, we consider the situ-

ation where ω2 =ω2
0n

−α for some 0 ≤ α< 1,5 and define ξ2
0 =ω2

0/
√
t
∫ t

0 σ
4
u du.6

In this situation, the asymptotic variance is

4t
∫ t

0
σ4
u du

{
H

n
k0�0

• + n−α 2ξ2
0ρk

1�1
•

H
+ n−2αξ4

0n
k2�2

•
H3

+ n−2α k
1�1
•

Hm
ξ4

0

}
when k′(0)2 + k′(1)2 = 0.

5When α> 1, the asymptotic analysis is essentially the same asω2 = 0—the case without noise.
Note that as α< 1, then [U] = ∞ so U /∈ S M.

6A similar local-to-zero asymptotics was used by Kalnina and Linton (2006) in the context of
the two scale estimator.
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TABLE V

FINITE SAMPLE VALUE OF Var{n1/4K(Xδ)}ω−1(
∫ t

0 σ
4
u du)

−3/4 LISTED AGAINST n AND
SCALED SQUARED BIAS FOR VARIOUS ORDER CASES WHEN ρ= 1a

ξ2 = 0�01 ξ2 = 0�001 ξ2 = 0�0001 ξ2 = 0�01 ξ2 = 0�001 ξ2 = 0�0001

n Var Bias2 Var Bias2 Var Bias2 Var Bias2 Var Bias2 Var Bias2

5th Order Kernel 6th Order Kernel

256 9�97 5.28 8�34 33�1 13�8 4�19 11�9 0�10 13�1 1�33 13�8 4�19
1,024 10�1 3.47 9�74 45�4 10�7 33�5 12�0 0�02 12�3 1�22 13�1 15�8
4,096 10�2 1.97 10�0 34�9 9�90 189 12�0 0�00 12�0 0�48 11�5 43�0

16,384 10�2 1.05 10�1 31�0 9�88 461 12�1 0�00 12�0 0�11 12�1 10�4
65,536 10�2 0.57 10�2 17�2 10�1 322 12�1 0�00 12�0 0�02 12�0 3�41

262,144 10�2 0.29 10�2 9�07 10�2 254 12�1 0�00 12�0 0�00 12�0 0�71
∞ 10�2 0.00 10�2 0�00 10�2 0�00 12�1 0�00 12�1 0�00 12�1 0�00

7-th Order Kernel 8-th Order Kernel

256 13�6 0.00 14�7 0�27 13�8 4�19 15�0 0�00 15�9 0�05 13�8 4�19
1,024 13�8 0.00 13�8 0�09 15�5 6�88 15�5 0�00 15�1 0�00 17�4 2�80
4,096 13�9 0.00 13�7 0�01 12�7 8�80 15�6 0�00 15�3 0�00 13�8 1�66

16,384 13�9 0.00 13�8 0�00 13�7 0�55 15�7 0�00 15�6 0�00 15�1 0�02
65,536 13�9 0.00 13�9 0�00 13�7 0�05 15�7 0�00 15�6 0�00 15�6 0�00

262,144 13�9 0.00 13�9 0�00 13�9 0�00 15�7 0�00 15�7 0�00 15�6 0�00
∞ 13�9 0.00 13�9 0�00 13�9 0�00 15�7 0�00 15�7 0�00 15�7 0�00

aIn the n= 256 case, when ξ2 is very small H is selected to be zero and so the realized kernel becomes the RV.

To determine the optimal rate forH, we setH = c0n
γ and find the four terms

of the variance to be O(nγ−1), O(n−α−γ), O(n−2α+1−3γ), and O(n−2α−γm−1), re-
spectively. The first three terms are all O(n−(1+α)/2) when γ∗ = (1−α)/2, which
is the optimal rate for H. With this rate for H, the last term of the asymptotic
variance is of order O(n−(1+α)/2−αm−1), which is lower than that of the other
terms, even if m is constant. So jittering (m→ ∞) is not needed under this
form of asymptotics. The rate of convergence is now slightly faster, for setting
H = cξ0n

(1−α)/2 we have

n(1+α)/4
{
K(Xδ)−

∫ t

0
σ2
u du

}
(21)

LY→ MN
{

0�ω0

(
4t
∫ t

0
σ4
u du

)3/4

(ck0�0
• + c−12ρk1�1

• + c−3k2�2
• )

}
�

which implies that the relative efficiency of different kernels in the class is not
effected by changing the asymptotic experiment to ω2 = ω2

0n
−α. From (21) it

follows that the optimal c is the same as under the fixed-ω2 asymptotics. Our
estimator of t

∫ t
0 σ

4
u du continues to be consistent, whereas the estimator ω̂2 =
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γ0(Xδ)/(2n) will decay to zero at the same rate as ω2. Our estimator ξ̂2 =
ω̂2/ÎQδ�S will be such that

1 − ξ̂2/(ξ2
0n

−α)= op(1)�
It now follows that our data dependent selection of the lag length, Ĥ =
cξ̂n1/2 � cξ0n

(1−α)/2, is robust, in the sense that it consistently selects the op-
timal rate for H under both the fixed-ω2 and small-ω2 asymptotic schemes.

Finally, our plug-in estimate of the asymptotic variance is

�̂ = Ĥ

n
4ÎQδ�Sk

0�0
• + 8

1

Ĥ
ω̂2K(Xδ)k

1�1
• + 4

n

Ĥ3
ω̂4k2�2

•

= n−(1+α)/2ω04t
∫ t

0
σ4
u du(cξ0k

0�0
• + c−12ρξ0k

1�1
• + c−3ξ0k

2�2
• )

+ op(n−(1+α)/2)

= n−(1+α)/2ω0

(
4t
∫ t

0
σ4
u du

)3/4

(ck0�0
• + c−12ρk1�1

• + c−3k2�2
• )

+ op(n−(1+α)/2)�

so that n(1+α)/2�̂ is consistent for the appropriate asymptotic variance given
in (21).

If we set the kernel weight for the first-order autocovariance to be k(H−1)
rather than 1 (i.e., remove the flat-top restriction), the bias due to noise is

ω2
0n

1−α{1 − k(H−1)} =ω2
0n

1−α
{
k′(0)H−1 + 1

2
k′′(0)H−2 +O(H−3)

}
�

When k′(0) = 0 and we use the optimal rate, H = cξ0n
(1−α)/2, the bias is

1
2ω

2
0ξ0 + o(1). So the bias does not vanish under this scheme either, unless

we impose the flat-topness or some other remedy.
When the kernel is “kinked,” in the sense that k′(0)2 + k′(1)2 �= 0, one can

show H ∝ n2/3(1−α) is optimal and that the best rate of convergence is n(1+2α)/6.
This reveals that kinked kernels are somewhat less inefficient when ω2 is local-
to-zero. For α= 0, we recall that the fastest rates of convergence are 0�50 and
0�333 for smooth and kinked kernels, respectively. The difference between the
two rates is smaller when α > 0, for example, with α = 5

6 the corresponding
convergence rates are about 0�458 and 0�444.

5. RELATED ISSUES

Some of our limit theories depend upon integrated quarticity
∫ t

0 σ
4
u du and

the noise’s variance ω2. We now discuss estimators of these quantities.
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5.1. Estimating ω2

To estimate ω2 Oomen (2005) suggested using the unbiased ω̃2 =
−{γ1(Xδ) + γ−1(Xδ)}/2n, while, for example, Bandi and Russell (2008) sug-
gested ω̂2 = γ0(Xδ)/2n which has a bias of

∫ t
0 σ

2
u du/2n. Both estimators have

their shortcoming, as ω̃2 may be negative and ω̂2 can be severely biased be-
cause

∫ t
0 σ

2
u du/2n may be large relative to ω2. Using Theorem 1 we have that

Var{n1/2(ω̃2 −ω2)} =ω4(5 + λ2)�

Var{n1/2(ω̂2 −ω2)} =ω4(1 + λ2)�

In the Gaussian case λ2 = 2, and so ω̃2 and ω̂2 have variances which are
around 3�5 and 1�5 times that of the ML estimator in the parametric case given
in (7). Although it is possible to derive a kernel style estimator to estimate ω2

efficiently, we resist the temptation to do so here as the statistical gains are
minor.

Instead we propose a simple bias correction of ω̂2 that is guaranteed to pro-
duce a nonnegative estimate. We have that

log E(ω̂2)= logω2 + log
{

1 +
∫ t

0
σ2
u du

/
(2nω2)

}
�

Substituting the consistent estimators K(Xδ) and γ0(Xδ)/2n for
∫ t

0 σ
2
u du

and ω2, respectively, yields our preferred estimator

ω̆2 = exp{log ω̂2 −K(Xδ)/γ0(Xδ)}�(22)

Note that K(Xδ)/γ0(Xδ) is an estimate of the relative bias of ω̂2, which van-
ishes as n→ ∞, so that ω̆2 − ω̂2 p→ 0.

5.2. Estimation of Integrated Quarticity,
∫ t

0 σ
4
u du

Estimating integrated quarticity reasonably efficiently is a tougher problem
than estimating [Y ]. When we wrote the first draft of this paper we did not
know of any research which had solved this problem in the context with noise,
so we introduced the method given below. However, we would like to point
out a recent paper by Jacod, Li, Mykland, Podolskij, and Vetter (2007), who
have introduced a novel pre-averaging method which could also be used here
instead of our method.

Define the subsampled squared returns, for some δ̃ > 0, x2
j�· = 1

S
×∑S−1

s=0 (Xδ̃(j+s/S) −Xδ̃(j−1+s/S))
2, j = 1�2� � � � � ñ, where ñ = �t/δ̃�. This allows us

to define a bipower variation type estimator of integrated quarticity

{
Xδ̃�ω

2;S}[2�2] = t

ñ

ñ∑
j=1

δ̃−2(x2
j�· − 2ω2)(x2

j−2�· − 2ω2)�
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The no-noise case of this statistic with no subsampling was introduced
by Barndorff-Nielsen and Shephard (2004, 2006) and studied in depth by
Barndorff-Nielsen, Graversen, Jacod, and Shephard (2006); see also Mykland
(2006).

Detailed calculations show that when δ̃ is small and S is large, then the
conditional variance of {Xδ̃�ω

2;S}[2�2] is approximately 72ω8ñ3/S2, so that
δ̃3/2S → ∞ leads to consistency.7 An interesting research problem is how to
make this type of estimator more efficient by using kernel type estimators. For
now we use moderate values of ñ and high values of S in our Monte Carlos and
empirical work.

The finite sample performance of our estimator can be greatly improved by
using the inequality t

∫ t
0 σ

4
u du ≥ (

∫ t
0 σ

2
u du)

2. This is useful as we have a very
efficient estimator of

∫ t
0 σ

2
u du. Thus our preferred way to estimate t

∫ t
0 σ

4
u du is

ÎQδ�S = max
[{K(Xδ)}2� {Xδ̃� ω̆

2;S}[2�2]]�
5.3. Effect of Endogenous and Stochastically Spaced Data

So far our analysis has been based on measuring prices at regularly spaced
intervals of length δ. In some ways it is more natural to work with returns
measured in tick time and so it would be attractive if we could extend the
above theory to cover stochastically spaced data. The convergence result inside
QV is known to hold under very wide conditions that allow the spacing to be
stochastic and endogenous. This is spelled out in, for example, Protter (2004,
pp. 66–77) and Jacod and Shiryaev (2003, p. 51). It is important, likewise, to

7Let εj = 1
S

∑S−1
s=0 [(Uδ̃(j+s/S) − Uδ̃(j−1+s/S))

2 − 2ω2 + 2(Uδ̃(j+s/S) − Uδ̃(j−1+s/S))(Yδ̃(j+s/S) −
Yδ̃(j−1+s/S))] and R = [∑n

j=1(x
2
j�· − 2ω2)(x2

j−2�· − 2ω2)] − ∑n
j=1 y

2
j�·y

2
j−2�· = ∑n

j=1 y
2
j�·εj−2 +∑n

j=1 εjy
2
j−2�· + ∑n

j=1 εjεj−2. Then R � ∑n
j=1 εj(y

2
j−2�· + y2

j+2�·) + ∑n
j=1 εjεj−2. Now

Var(
∑n

j=1 εj(y
2
j−2�· + y2

j+2�·)|Y)� (12ω4/S)
∑n

j=1(y
2
j−2�· + y2

j+2�·)
2 =O(n−1S−1), so

Var(R|Y) � Var

(
n∑
j=1

εjεj−2

∣∣∣Y)=
n∑
j=1

Var(εjεj−2|Y)+ 2nCov(εjεj−2� εj−1εj−3|Y)

=
n∑
j=1

E(ε2
j |Y)E(ε2

j−2|Y)+ 2nCov(εjεj−2� εj−1εj−3|Y)

�
n∑
j=1

{
8ω4

S
+ 8ω2

S
(y2
j )·

}{
8ω4

S
+ 8ω2

S
(y2
j−2)·

}
+ n

S2
2(2ω2)2 + · · ·

= 72ω8n

S2
+O(S−2)�

This is enough to ensure the estimator converges to integrated quarticity as we know
∑

j y
2
j y

2
j−2

will deliver the required quantity.
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be able to derive central limit theorems (CLTs) for stochastically spaced data
without assuming the times of measurement are independent of the underly-
ing B S M, which is the assumption used by Phillips and Yu (2006), Mykland
and Zhang (2006), and Barndorff-Nielsen and Shephard (2005). This is em-
phasized by Renault and Werker (2008) in both their theoretical and empirical
work.

Let Y ∈ B S M and assume we have measurements at times tj = Tδj , j =
1�2� � � � � n, where 0 = t0 < t1 < · · ·< tn = T1 and where T is a stochastic process
of the form Tt =

∫ t
0 τ

2
u du, with τ having strictly positive, cadlag sample paths.

Then we can construct a new process Zt = YTt , so at the measurement times
Zδj = YTδj , j = 1�2� � � � � n. Performing the analysis on observations of Z made
at equally spaced times then allows one to analyze irregularly spaced data onY .
The following argument shows that Z ∈ B S M with spot volatility σTt τt and so
the analysis is straightforward when we replace σt with σTt τt in all our argu-
ments. This is consistent with the central limit results in the realized variance
case obtained by Mykland and Zhang (2006). In particular, the feasible CLT is
implemented by recording data every five transactions, say, but then analyzing
it as if the spacing had been equidistant.

Write Z = Y ◦ T and St =
∫ t

0 σ
2
u du. We assume that Y and T are adapted

to a common filtration Ft , which includes the history of the paths of Tu and
Y ◦ Tu for 0 ≤ u ≤ t. This assumption implies that σu− is in Ft for 0 ≤ u ≤ Tt .
Recall the key result (e.g., Revuz and Yor (1999, p. 181)) [Z] = S ◦ T , while
Z ∈ Mloc. The following proposition shows that [Z] is absolutely continuous
and implies by the martingale representation theorem that Z is a stochastic
volatility process with spot volatility of σTt τt .

PROPOSITION 2: Let υt = σTt τt and

Υt =
∫ t

0
υ2
u du�(23)

Then υ is a cadlag process and Υ = S ◦ T .

The implication of this for kernels is that we can write Zt = ∫ t
0 aTuτu du +∫ t

0 σTuτu dB
#
u , where B# is Brownian motion. Hence if we define a tick version

of the kernel estimator

γh(Zn)t =
�t/δ�∑
j=1

(Y ◦ Tδj −Y ◦ Tδ(j−1))(Y ◦ Tδ(j−h) −Y ◦ Tδ(j−h−1))�

K(Zn)t = γ0(Zn)t +
H∑
h=1

k

(
h− 1
H

)
{γh(Zn)t + γ−h(Zn)t}�
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then the theory for this process follows from the previous results. Thus using
the symmetric kernel allows consistent inference on [Z]t = [Y ]Tt .

5.4. Effect of Serial Dependence

So far we have assumed that U ∈ W N . Now we will relax the assumption
Us ⊥⊥Ur and allow U to be serial dependent to the extent that

H∑
h=1

ah�HUhδ =Op(1) for any
H∑
h=1

a2
h�H =O(1)�(24)

So we have in mind a situation where the serial dependence is tied to the sam-
pling frequency, δ, as opposed to calendar time. Thus, the asymptotic exper-
iment is one where the dependence between Us and Ut (s �= t) vanishes as
δ→ 0, while Uhδ and U(h−j)δ with j fixed may be highly dependent for any δ.
A simple example of this is where Ujδ is a first-order moving average process
in j with a temporal dependence parameter which is unaltered as δ changes.

PROPOSITION 3: Suppose (24) holds. If k′(0)= k′(1)= 0, then

K(Uδ)= −2H−2
H∑
h=1

k′′
(
h

H

) n∑
i=1

UiδU(i−h)δ

+Op(nH−3)+Op(H−1/2)�

With dependent noise, it is no longer true that H−1/2
∑H

h=1 k
′′( h

H
)n−1/2 ×∑n

i=1UiδU(i−h)δ
L→ N(0�k2�2

• ω
4). However, despite the serial dependence, this

term may be Op(1), in which case the noise will not have any impact on the
asymptotic distribution of K(Xδ) if we use an inefficient rate for H, such as
H ∝ n2/3.

PROPOSITION 4: We assume k′′(0) = 0, that |k′′′(0)| <∞, and that Ujδ, j =
� � � �0�1�2� � � � � is an AR(1) process with persistence parameter ϕ, |ϕ|< 1. Then

(nH)−1/2
H∑
h=1

k′′
(
h

H

) n∑
i=1

UiδU(i−h)δ
L→N

(
0�ω4 1 +ϕ2

1 −ϕ2
k2�2

•

)
�

This means that

K(Uδ)=Op
(
n1/2

H3/2

)
+Op

(
n

H3

)
+Op(m−1/2H−1/2)�

So if H ∝ n1/2, then K(Xδ)=Op(n−1/4).
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If we assume that Y ⊥⊥U , then temporal dependence in U makes no differ-
ence to the asymptotic behavior of γh(Uδ�Yδ) as δ ↓ 0, for the limit behavior
is driven by the local martingale difference behavior of the increments of the
Y process, we just need to redefine ω2 = limn→∞ Var(n−1/2

∑n

j=1Ujδ).
The above results mean that if we set H ∝ n1/2, then K(Uδ)=Op(n−1/4) and

so the rate of convergence of the realized kernel is not changed by this form of
serial dependence, but the asymptotic distribution is altered.

5.5. Endogenous Noise

One of our key assumptions has been that Y ⊥⊥U , that is, the noise can be
regarded as an exogenous process. Hence it is interesting to ask if our realized
kernels continue to be consistent when U is endogenous. We do this under a
simple linear model of endogeneity,

Uδi =
H̄∑
h=0

βh(Yδ(i−h) −Yδ(i−1−h))+ Ūδi�

where Y ⊥⊥ Ū and for simplicity we assume that Ū ∈ W N . Now

γh(Yδ�Uδ)=
H̄∑
j=0

βjγh+j(Yδ)−
H̄∑
j=0

βjγh+j+1(Yδ)+ γh(Yδ� Ūδ)�

Hence our asymptotic methods for studying the distribution of realized ker-
nels under exogenous noise can be used to study the impact of endogenous
noise on realized kernels through the limit theory we developed for γh(Yδ)
and γh(Yδ� Ūδ). In particular,

γh(Yδ�Uδ)− γh(Yδ� Ūδ)=

⎧⎪⎨⎪⎩
β0[Y ] +Op(n−1/2)� h= 0,

−β0[Y ] +Op(n−1/2)� h= −1,
Op(n

−1/2)� |h| �= 1.

Hence realized kernels will be robust to this type of endogenous noise. An
alternative approach to dealing with endogenous noise has been independently
proposed by Kalnina and Linton (2006) using multiscale estimators.

5.6. Jumps

In this section we explore the impact of jumps under some strong assump-
tions. Our arguments here are heuristic. The observed price process is now

R=X +D= Y +D+U�
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where Ds is a jump process which has jumped once at time τ × t, where τ ∈
(0�1), andD⊥⊥ Y ⊥⊥U . We write (intraday) returns as rj = yj+dj+uj , where,
for example, dj =Djδ −D(j−1)δ. Thus

K(Rδ)−K(Xδ)−
n∑
j=1

d2
j =Lδ +Mδ�

where Lδ = d�nτ�
∑H

h=−H why�nτ�+h, Mδ = d�nτ�
∑H

h=−H whu�nτ�+h, and we, as
usual, set w0 = 1 and wh = k( |h|−1

H
) for h= ±1� � � � �±H. We have established

the asymptotic properties of K(Xδ)−
∫ t

0 σ
2
s ds, so the asymptotic properties of

K(Rδ) − ∫ t
0 σ

2
s ds − ∑n

j=1 d
2
j hinge on those of Lδ +Mδ. We assume σ ⊥⊥ W

and a= 0 to ease the exposition.
Conditioning on d and σ , we have with zj = yj/σjδ that

Lδ � στtd�nτ�
H∑

h=−H
whz�nτ�+h ∼N

(
0�

2H
n
σ2
τtd

2
�nτ�

1
H

H∑
h=−H

w2
h

)
�

So if H = cξn1/2, then conditionally

n1/4

(
d�nτ�

H∑
h=−H

why�nτ�+h

)
L→ MN(0�2cξk0�0

• σ
2
τtd

2
�nτ�)�

If H = c(ξ2n)2/3, then conditionally

n1/6

(
d�nτ�

H∑
h=−H

why�nτ�+h

)
L→ MN(0�2cξ4/3k0�0

• σ
2
τtd

2
�nτ�)�

What happens with market microstructure effects? We need to look at

Mδ = d�nτ�
H∑

h=−H
whu�nτ�+h = d�nτ�

H∑
h=−H

wh(U(�nτ�+h)δ −U(�nτ�+h−1)δ)

= d�nτ�
H∑

h=−H−1

{
k

(
h− 1
H

)
− k

(
h

H

)}
U(�nτ�+h)δ�

Then

Var(
√
HMδ|d�nτ�) = Hω2d2

�nτ�

H∑
h=−H−1

{
k

(
h− 1
H

)
− k

(
h

H

)}2

→ω2d2
�nτ�2k

1�1
• �



1510 BARNDORFF-NIELSEN, HANSEN, LUNDE, AND SHEPHARD

so if H ∝ n1/2, the noise contributes to the asymptotic distribution, while if
H ∝ n2/3, it does not. This suggests the realized kernel is consistent for the
quadratic variation, [Y ]t , at the same rate of convergence as before. The as-
ymptotic distribution is, of course, not easy to calculate even in the pure B S M
plus jump case (e.g., Jacod (2006)). The extension of this argument to allow
for finite activity jump processes is straightforward.

6. SIMULATION STUDY

6.1. Goal of the Study

In this section we report simulation results which assess the accuracy of the
feasible asymptotic approximation for the realized kernel. A much more thor-
ough analysis is provided in the working paper version of this paper (Barndorff-
Nielsen, Hansen, Lunde, and Shephard (2007)).

Before we turn our attention to feasible asymptotic distributions, we note
that the working paper also reports on the accuracy of K(Xδ) as an estimator
of
∫ t

0 σ
2
u du and ÎQδ�S as an estimator of t

∫ t
0 σ

4
u du. The raw estimator K(Xδ)

may be negative, in which case we always truncate it at zero (the same tech-
nique is used for ML estimators of course). The working paper shows that this
occurrence is extremely rare. In our simulations we generated millions of arti-
ficial samples and less than 25 of them resulted in a negative value for K(Xδ),
using the Tukey–Hanning2 weights.

In this short section our focus will be assessing the infeasible and feasible
central limit theories for K(Xδ)− ∫ t

0 σ
2
u du. Throughout we simulate over the

time interval [0�1]. We recall the asymptotic variance of K(Xδ) is given in (12)
which we write as � here. This allows us to compute the asymptotic pivot

Zn =
K(Xδ)−

∫ 1

0
σ2
u du

√
�

L→N(0�1)�

An alternative is to use the delta method and base the asymptotic analysis
on (e.g., Barndorff-Nielsen and Shephard (2002) and Goncalves and Meddahi
(2004))

Zlog
n =

log{K(Xδ)+ d} − log
{∫ 1

0
σ2
u du+ d

}
√
�/{K(Xδ)+ d}

L→N(0�1)�

The presence of d ≥ 0 allows for the possibility that K(Xδ) may be truncated
to be exactly zero. By selecting d > 0, we have the property that K(Xδ)+ d is
positive.
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In the infeasible case, our simple rule-of-thumb for the choice of H is

H = c∗ω
√
n/
∫ t

0 σ
2
u du, which immediately gives us �. In practice this is less

interesting than the feasible version, which puts Ĥ = c∗ω̂
√
n/γ0(Xδ̄), where

γ0(Xδ̄) is the realized variance estimator based on low frequency data, such as
10 minute returns, which should not be too sensitive to market frictions. Hav-
ing selectedH, in the feasible case we can then compute �̂ by pluggingK(Xδ),
ω̌2, and ÎQδ�S into our expression for �, replacing

∫ 1
0 σ

2
u du, ω2, and

∫ 1
0 σ

4
u du,

respectively. Monte Carlo results reported in the working paper suggest taking
S = √

n in computing ÎQδ�S .

6.2. Simulation Design

We focus on the Tukey–Hanning2 kernel because it is near efficient and does
not require too many intraday returns outside the [0� t] interval. We simulate
data for the unit interval [0�1] and normalize 1 second to be 1/23�400, so that
[0�1] is thought to span 6.5 hours. The X process is generated using a Euler
scheme based on N = 23�400 intervals. We then construct sparsely sampled
returns Xi/n −X(i−1)/n, based on sample sizes n. In our Monte Carlo designs n
takes on the values 195, 390, 780, 1,560, 4,680, 7,800, 11,700, and 23,400. The
case of 1 minute returns is when n= 390.

We consider two stochastic volatility models that are commonly used in this
literature; see, for example, Huang and Tauchen (2005) and Goncalves and
Meddahi (2004). The first is a 1-factor model (SV1F):

dYt = μdt + σt dWt� σt = exp(β0 +β1τt)�

dτt = ατt dt + dBt� corr(dWt�dBt)= ϕ�
Here ϕ is a leverage parameter. To make the results comparable to our con-
stant volatility simulations reported in our working paper we impose that
E(σ2

t )= 1 by setting β0 = β2
1/(2α). We utilize the fact that the stationary dis-

tribution τt ∼N(0�− 1
2α) to restart the process each day. In these experiments

we set μ = 0�03, β1 = 0�125, α = −0�025, and ϕ = −0�3. The variance of σ is
comparable to the empirical results found in, for example, Hansen and Lunde
(2005).

We also consider a 2-factor SV model (SV2F):8

dYt = μdt + σt dWt� σt = s-exp(β0 +β1τ1t +β2τ2t)�

dτ1t = α1τ1t dt + dB1t � dτ2t = α2τ2t dt + (1 +φτ2t) dB2t �

corr(dWt�dB1t)= ϕ1� corr(dWt�dB2t)= ϕ2�

8The function s-exp[x] is defined in the working paper (Barndorff-Nielsen et al. (2007)), which
also gives a detailed description of our discretization scheme for the models.
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We adopt the configuration from Huang and Tauchen (2005) and set μ= 0�03,
β0 = −1�2, β1 = 0�04, β2 = 1�5, α1 = −0�00137, α2 = −1�386, φ = 0�25, and
ϕ1 = ϕ2 = −0�3. At the start of each interval we initialize the two factors
by drawing the persistent factor from its unconditional distribution, τ10 ∼
N(0� (−1/2α1)), while the strongly mean-reverting factor is simply started at
zero, τ20 = 0. An important difference between the two volatility models is the
extent of heteroskedasticity, because the variation in ρ is much larger for the
2-factor model than for the 1-factor model.

Finally, the market microstructure effects are modelled through ξ2. This is
varied over 0.0001, 0.001, and 0.01, the latter being regarded as a very large
effect indeed. These values are taken from the detailed study of Hansen and
Lunde (2006).

6.3. Results

Table VI shows the Monte Carlo results for the infeasible asymptotic theory
for Zn, knowing a priori the value of �. We can see from the table that the
results are rather good, although the asymptotics are slightly underestimating
the mass of the distribution in the tails. The mean and standard deviations of
Zn show that the Z-statistic is slightly overdispersed.

Table VII shows the results for the feasible asymptotic theory for Ẑn. This
indicates that the asymptotic theory does eventually kick in, but it takes very
large samples for it to provide anything like a good approximation. The reason
for this is clearly that it is difficult to accurately estimate the integrated quar-
ticity. This result is familiar from the literature on realized volatility where the
same phenomenon is observed.

Table VIII shows the results for the log version of the feasible theory based
on Ẑlog

n using d = 10−6. The accuracy of the asymptotic predictions does not
seem to change very much with ξ2 and is much better than in the Ẑn case.
For small sample sizes, we note some distortions in the tails, but generally the
asymptotics results provide reasonably good approximations.

To conserve space we only present one table with results for the 2-factor
model. Table IX presents the results for the feasible theory based on our
preferred Ẑlog

n statistic. For the 2-factor model, we note a slower conver-
gence to the asymptotic distribution. This result is not surprising because
the integrated quarticity is harder to estimate in this design, in part because
t
∫ t

0 σ
4
s ds/(

∫ t
0 σ

2
s ds)

2 tends to be larger in the 2-factor model than is the case
for the 1-factor model. This makes the inequality ÎQ ≥ {K(Xδ)}2 less valuable
for the estimation of t

∫ t
0 σ

4
s ds.
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TABLE VI

SV1F: FINITE SAMPLE PROPERTIES OF Zn
a

No. Obs. H̄∗ Mean Stdv. 0.5% 2.5% 5% 95% 97.5% 99.5%

ξ2 = 0�01, number of reps. = 100,000
195 9�00 0�002 1.052 0.08 1.54 4.17 93.12 95.67 98.43
390 12�0 0�001 1.036 0.17 1.78 4.38 93.50 96.12 98.74
780 17�0 −0�002 1.025 0.18 1.88 4.48 93.84 96.44 98.95

1,560 23�0 −0�003 1.015 0.26 1.94 4.49 94.18 96.70 99.09
4,680 40�0 −0�006 1.009 0.31 2.12 4.68 94.49 96.99 99.20
7,800 51�0 −0�005 1.009 0.34 2.23 4.70 94.57 97.05 99.26

11,700 63�0 −0�005 1.010 0.36 2.22 4.76 94.57 97.06 99.28
23,400 88�0 −0�002 1.007 0.40 2.30 4.84 94.66 97.19 99.34

ξ2 = 0�001, number of reps. = 100,000
195 3�00 −0�002 1.015 0.15 1.67 4.20 93.94 96.45 98.91
390 4�00 −0�004 1.007 0.21 1.81 4.27 94.22 96.76 99.10
780 6�00 −0�005 1.005 0.27 1.98 4.43 94.40 96.98 99.23

1,560 8�00 −0�005 1.002 0.33 2.10 4.59 94.54 97.09 99.28
4,680 13�0 −0�005 1.003 0.39 2.32 4.82 94.72 97.27 99.40
7,800 17�0 −0�003 1.005 0.39 2.31 4.80 94.75 97.21 99.37

11,700 20�0 −0�004 1.004 0.43 2.38 4.93 94.81 97.36 99.39
23,400 28�0 −0�002 1.001 0.46 2.42 4.88 94.87 97.39 99.41

ξ2 = 0�0001, number of reps. = 100,000
195 1�00 −0�003 1.003 0.19 1.72 4.15 94.28 96.75 99.06
390 2�00 −0�005 1.003 0.25 1.98 4.41 94.45 96.94 99.21
780 2�00 −0�002 0.998 0.31 2.14 4.50 94.60 97.23 99.34

1,560 3�00 −0�005 1.002 0.38 2.28 4.74 94.73 97.22 99.39
4,680 4�00 −0�004 1.005 0.45 2.45 5.02 94.83 97.31 99.40
7,800 6�00 −0�002 1.003 0.44 2.33 4.84 94.81 97.31 99.41

11,700 7�00 −0�002 1.001 0.45 2.39 4.84 94.85 97.37 99.44
23,400 9�00 0�000 0.999 0.46 2.37 4.83 94.90 97.43 99.47

aSummary statistics and empirical quantiles for the infeasible statistic, Zn , that employs the asymptotic vari-
ance, �. The empirical quantiles are benchmarked against those for the limit distribution, N(0�1). The simulation
design is the 1-factor model (SV1F) and K(Xδ) is based on Tukey–Hanning2 weights.

7. EMPIRICAL STUDY

7.1. Analysis of General Electric Transactions in 2004

In this subsection we implement our efficient, feasible inference procedure
for the daily increments of [Y ] for the realized kernel estimator on transaction
log prices of General Electric (GE) shares carried out on the New York Stock
Exchange (NYSE) in 2004. A more detailed analysis, including a comparison
with results based on data from 2000 and on 29 other major stocks, is provided
in our working paper (Barndorff-Nielsen et al. (2007)). We should note that
the variance of the noise was around 10 times higher in 2000 than in 2004,
so looking over both periods is instructive. The working paper also details the
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TABLE VII

SV1F: FINITE SAMPLE PROPERTIES OF Ẑn
a

No. Obs. H̄∗ Mean Stdv. 0.5% 2.5% 5% 95% 97.5% 99.5%

ξ2 = 0�01, number of reps. = 100,000
195 8�01 −0�257 1.132 3.89 7.71 10�9 98.85 99.78 100�0
390 10�6 −0�202 1.073 2.78 6.32 9�46 98.27 99.57 99�99
780 14�3 −0�164 1.036 2.07 5.41 8�50 97.82 99.34 99�97

1,560 19�8 −0�136 1.015 1.60 4.67 7�65 97.38 99.10 99�94
4,680 33�6 −0�104 1.002 1.22 3.97 6�84 96.98 98.78 99�88
7,800 43�1 −0�091 1.000 1.11 3.72 6�58 96.73 98.67 99�83

11,700 52�7 −0�082 1.000 1.02 3.62 6�41 96.52 98.54 99�82
23,400 74�2 −0�067 0.997 0.87 3.39 6�20 96.44 98.41 99�78

ξ2 = 0�001, number of reps. = 100,000
195 5�30 −0�242 1.079 3.29 6.88 9�91 98.98 99.81 100�0
390 5�94 −0�181 1.019 2.19 5.38 8�42 98.41 99.57 99�99
780 7�03 −0�140 0.994 1.57 4.42 7�36 97.90 99.32 99�96

1,560 8�79 −0�108 0.986 1.27 3.88 6�66 97.36 99.03 99�93
4,680 13�7 −0�078 0.985 0.97 3.46 6�10 96.73 98.66 99�84
7,800 17�1 −0�066 0.988 0.86 3.27 5�91 96.45 98.45 99�78

11,700 20�7 −0�061 0.988 0.82 3.22 5�95 96.40 98.44 99�77
23,400 28�8 −0�049 0.987 0.76 3.08 5�65 96.16 98.27 99�74

ξ2 = 0�0001, number of reps. = 100,000
195 4�73 −0�235 1.058 2.99 6.55 9�61 99.02 99.81 100�0
390 4�82 −0�172 0.993 1.85 4.88 7�84 98.49 99.63 99�99
780 4�98 −0�126 0.966 1.30 3.93 6�71 98.06 99.39 99�97

1,560 5�28 −0�091 0.958 1.03 3.43 6�04 97.53 99.11 99�94
4,680 6�31 −0�058 0.965 0.75 3.00 5�57 96.80 98.68 99�84
7,800 7�18 −0�046 0.969 0.68 2.79 5�30 96.42 98.42 99�78

11,700 8�14 −0�040 0.972 0.65 2.76 5�28 96.29 98.34 99�75
23,400 10�5 −0�030 0.976 0.62 2.66 5�19 96.01 98.19 99�72

aSummary statistics and empirical quantiles for the feasible statistic, Ẑn , that employs our estimate of the as-
ymptotic variance, �̂. The empirical quantiles are benchmarked against those for the limit distribution, N(0�1). The
simulation design is the 1-factor model (SV1F) and K(Xδ) is based on Tukey–Hanning2 weights.

cleaning we carried out on the data before it was analyzed and the precise way
we calculated all of our statistics.

Our realized kernel will be implemented on returns recorded every S trans-
actions, where S is selected each day so that there are approximately 360 obser-
vations a day.9 This means that on average these returns are recorded every 60
seconds. This inference method will be compared to the feasible procedure of
Barndorff-Nielsen and Shephard (2002), which ignores the presence of market

9As our sample size is quite large, it is important to calculate it in tick time so as not to be
influenced by the bias effect discussed by Renault and Werker (2008) caused by sampling in
calendar time.
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TABLE VIII

SV1F: FINITE SAMPLE PROPERTIES OF Ẑ
log
n

a

No. Obs. H̄∗ Mean Stdv. 0.5% 2.5% 5% 95% 97.5% 99.5%

ξ2 = 0�01, number of reps. = 100,000
195 8�01 −0�090 0.982 0.46 2.92 5.88 96.22 98.19 99.69
390 10�6 −0�074 0.984 0.51 2.70 5.51 95.91 98.01 99.65
780 14�3 −0�064 0.982 0.43 2.54 5.29 95.75 97.92 99.60

1,560 19�8 −0�055 0.980 0.42 2.40 5.09 95.67 97.82 99.59
4,680 33�6 −0�045 0.982 0.44 2.40 4.98 95.60 97.80 99.53
7,800 43�1 −0�040 0.985 0.44 2.40 5.01 95.53 97.77 99.52

11,700 52�7 −0�035 0.988 0.46 2.39 4.97 95.36 97.67 99.54
23,400 74�2 −0�029 0.989 0.44 2.42 4.98 95.44 97.71 99.50

ξ2 = 0�001, number of reps. = 100,000
195 5�30 −0�121 0.972 0.95 3.60 6.42 97.10 98.75 99.85
390 5�94 −0�097 0.964 0.74 3.09 5.79 96.79 98.61 99.82
780 7�03 −0�078 0.963 0.64 2.74 5.44 96.50 98.52 99.78

1,560 8�79 −0�060 0.967 0.56 2.67 5.18 96.26 98.27 99.72
4,680 13�7 −0�044 0.976 0.53 2.60 5.10 95.91 98.07 99.67
7,800 17�1 −0�037 0.981 0.52 2.53 5.02 95.75 97.92 99.60

11,700 20�7 −0�035 0.982 0.52 2.61 5.16 95.73 97.93 99.60
23,400 28�8 −0�028 0.983 0.52 2.56 5.00 95.57 97.86 99.59

ξ2 = 0�0001, number of reps. = 100,000
195 4�73 −0�123 0.962 0.91 3.42 6.26 97.28 98.86 99.86
390 4�82 −0�098 0.947 0.70 2.86 5.53 97.07 98.77 99.85
780 4�98 −0�075 0.942 0.61 2.60 5.06 96.95 98.74 99.82

1,560 5�28 −0�054 0.945 0.51 2.47 4.94 96.68 98.52 99.82
4,680 6�31 −0�034 0.959 0.50 2.44 4.86 96.21 98.27 99.69
7,800 7�18 −0�027 0.966 0.46 2.31 4.78 95.89 98.06 99.68

11,700 8�14 −0�024 0.970 0.47 2.37 4.80 95.87 98.02 99.63
23,400 10�5 −0�017 0.974 0.47 2.34 4.79 95.65 97.92 99.62

aSummary statistics and empirical quantiles for the feasible statistic, Ẑlog
n , that employs our estimate of the as-

ymptotic variance, �̂, and d = 10−6. The empirical quantiles are benchmarked against those for the limit distribution,
N(0�1). The simulation design is the 1-factor model (SV1F) and K(Xδ) is based on Tukey–Hanning2 weights.

microstructure effects, based on returns calculated over 20 minutes within each
day. This baseline was chosen as Hansen and Lunde (2006) suggested that the
Barndorff-Nielsen and Shephard (2002) method was empirically sound when
based on that type of interval for thickly traded stocks.

General Electric shares are traded very frequently on the NYSE. A typical
day results in between 1,500 and 6,000 transactions. For this stock Hansen and
Lunde (2006) have presented detailed work which suggests that over 60 second
intervals it is empirically reasonable to assume that Y and U are uncorrelated
and U is roughly a white noise process. Hence the main assumptions behind
the inference procedure for our efficient kernel estimator are roughly satisfied
and so we feel comfortable implementing the feasible limit theory on this data
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TABLE IX

SV2F: FINITE SAMPLE PROPERTIES OF Ẑ
log
n

a

No. Obs. H̄∗ Mean Stdv. 0.5% 2.5% 5% 95% 97.5% 99.5%

ξ2 = 0�01, number of reps. = 100,000
195 8�50 −0�187 1.123 0.74 5.14 9.67 94.36 96.71 99.01
390 11�4 −0�159 1.114 1.01 4.99 9.01 94.32 96.80 99.07
780 15�5 −0�140 1.101 1.02 4.63 8.20 94.49 96.83 99.05

1,560 21�5 −0�119 1.085 1.04 4.20 7.74 94.62 96.98 99.11
4,680 36�6 −0�096 1.067 0.94 3.90 7.17 94.83 97.13 99.22
7,800 47�0 −0�083 1.059 0.87 3.71 6.87 94.71 97.21 99.31

11,700 57�4 −0�076 1.053 0.90 3.62 6.75 94.79 97.19 99.35
23,400 80�9 −0�065 1.043 0.86 3.46 6.38 95.03 97.32 99.37

ξ2 = 0�001, number of reps. = 100,000
195 5�53 −0�254 1.209 3.14 8.10 12.3 94.70 97.00 99.06
390 6�34 −0�203 1.188 2.71 7.12 11.0 94.49 96.91 99.07
780 7�67 −0�161 1.165 2.31 6.24 9.93 94.43 96.86 99.05

1,560 9�77 −0�132 1.141 1.97 5.60 9.19 94.51 96.84 99.09
4,680 15�5 −0�098 1.106 1.60 4.83 8.15 94.64 97.07 99.22
7,800 19�5 −0�084 1.089 1.40 4.47 7.63 94.73 97.09 99.25

11,700 23�6 −0�078 1.078 1.30 4.31 7.34 94.77 97.24 99.34
23,400 32�9 −0�067 1.064 1.15 4.00 7.00 94.91 97.36 99.39

ξ2 = 0�0001, number of reps. = 100,000
195 4�82 −0�256 1.215 3.24 8.21 12.4 94.74 97.02 99.07
390 4�94 −0�201 1.194 2.84 7.17 11.1 94.61 96.90 99.02
780 5�15 −0�150 1.174 2.43 6.39 9.96 94.35 96.76 99.03

1,560 5�54 −0�115 1.150 2.07 5.66 9.12 94.34 96.84 99.07
4,680 6�83 −0�075 1.118 1.64 4.85 8.00 94.22 96.81 99.11
7,800 7�91 −0�064 1.100 1.46 4.47 7.61 94.54 97.00 99.17

11,700 9�06 −0�058 1.087 1.29 4.25 7.27 94.46 97.05 99.26
23,400 11�8 −0�049 1.066 1.16 3.86 6.73 94.60 97.19 99.30

aSummary statistics and empirical quantiles for the feasible statistic, Ẑlog
n , that employs our estimate of the as-

ymptotic variance, �̂, and d = 10−6. The empirical quantiles are benchmarked against those for the limit distribution,
N(0�1). The simulation design is the 2-factor model (SV2F) and K(Xδ) is based on Tukey–Hanning2 weights.

set. We should note that on all the days in 2004 our realized kernel estimator
of the daily increments of [Y ] was positive.

Figure 3 shows daily 95% confidence intervals (CIs) for the realized ker-
nel for November 2004 using the modified Tukey–Hanning2 weights (17) with
H = c∗ξ̂n1/2. Also drawn are the corresponding results for the realized vari-
ance using the limit distribution for the logarithm of the realized variance,
log{γ0(X20 min)}; see Barndorff-Nielsen and Shephard (2002). We can see the
realized kernel has much shorter CIs. The width of these intervals does change
through time, tending to be slightly wider in high volatility periods. Over the
entire year there are only 3 days when the CIs do not overlap.
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FIGURE 3.—Confidence intervals for the daily increments to [Y ] for General Electric (GE)
in November 2004. Shaded rectangles denote the 95% confidence intervals based on 20 minute
returns using the Barndorff-Nielsen and Shephard (2002) feasible realized variance inference
method. The shorter intervals are for K(Xδ) based on Tukey–Hanning2 weights, sampling in tick
times so the period over which returns are calculated is roughly 60 seconds.

Table X shows the details of these results for November 2004. The estimates
of ω2 are very small, ranging from about 0�0004 to 0�0011. These are in the
range of the small to medium levels of noise set out in our Monte Carlo de-
signs discussed in the previous section. The table shows the sample size for
the realized kernel, which is between 335 and 361 intervals of roughly 60 sec-
onds. Typically each interval corresponds to about 15 transactions. It records
the daily selected value of H that ranges from 4 to 6, which is rather modest
and is driven by the fact that ω2 is quite small.

Table XI provides summary statistics for some alternative estimators over
the entire year. This suggests that the other realized kernel estimators have
roughly the same average value and that they are quite tightly correlated. The
table also records the summary statistics for the realized variance computed
using 20, 5, and 1 minute and 10 and 1 second intervals. The last two of these
estimators show a substantially higher mean. Interestingly, the realized QV
based on 5 minute sampling is most correlated with the realized kernels, a re-
sult in line with the optimal sampling frequencies reported in Bandi and Rus-
sell (2008). The realized kernels have a stronger degree of serial dependence
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TABLE X

INFERENCE FOR GENERAL ELECTRIC (GE) VOLATILITY IN NOVEMBER 2004a

Date Trans Lower RV20m Upper n Lower KV60s Upper S n H ω̂2 ω̆2

1 Nov 4,631 0.48 0.83 1.46 20 0.49 0.69 0.95 13 357 5 0.0016 0.0007
2 Nov 4,974 0.62 1.19 2.28 20 0.84 1.17 1.64 14 356 6 0.0025 0.0011
3 Nov 4,918 0.51 0.92 1.63 20 0.75 1.02 1.40 14 352 5 0.0021 0.0008
4 Nov 5,493 0.26 0.52 1.03 20 0.41 0.57 0.78 16 344 5 0.0013 0.0005
5 Nov 5,504 0.65 1.26 2.44 20 1.16 1.59 2.19 16 344 5 0.0028 0.0009
8 Nov 4,686 0.25 0.46 0.85 20 0.31 0.45 0.64 14 335 6 0.0014 0.0008
9 Nov 4,923 0.38 1.05 2.95 20 0.57 0.77 1.04 14 352 4 0.0014 0.0004

10 Nov 4,970 0.29 0.55 1.07 20 0.30 0.42 0.59 14 355 6 0.0013 0.0007
11 Nov 4,667 0.27 0.71 1.91 20 0.35 0.49 0.69 13 359 5 0.0011 0.0004
12 Nov 4,822 0.17 0.32 0.60 20 0.23 0.32 0.45 14 345 6 0.0009 0.0005
15 Nov 4,681 0.38 0.80 1.72 20 0.43 0.60 0.84 14 335 5 0.0015 0.0007
16 Nov 4,526 0.31 0.54 0.93 20 0.45 0.62 0.85 13 349 5 0.0011 0.0004
17 Nov 5,477 0.77 1.39 2.51 20 0.76 1.05 1.44 16 343 5 0.0018 0.0006
18 Nov 4,738 0.24 0.41 0.68 20 0.32 0.45 0.64 14 339 6 0.0014 0.0007
19 Nov 5,224 0.83 1.73 3.62 20 0.97 1.31 1.76 15 349 4 0.0019 0.0005
22 Nov 5,359 0.39 0.72 1.33 20 0.51 0.69 0.95 15 358 5 0.0012 0.0004
23 Nov 5,405 0.47 0.97 1.99 20 0.75 1.03 1.41 15 361 5 0.0016 0.0005
24 Nov 4,626 0.19 0.36 0.68 20 0.48 0.79 1.30 13 356 5 0.0013 0.0004
29 Nov 4,709 0.59 1.17 2.31 20 0.99 1.36 1.86 14 337 5 0.0023 0.0007
30 Nov 4,719 0.32 0.74 1.71 20 0.58 0.84 1.20 14 338 6 0.0018 0.0007

a“Trans” denotes the number of transactions. RV20m is the realized variance based on 20 minute returns and
KV60s is K(Xδ) based on Tukey–Hanning2 weights, and sampling of every Sth transaction price, so the period over
which returns are calculated is roughly 60 seconds.

than our benchmark realized variance that is based on a moderate sampling, so
the period over which returns are calculated is 20 minutes. This point suggests
the realized kernel may be useful when it comes to forecasting, extending the
exciting work of Andersen, Bollerslev, Diebold, and Labys (2001). The high
serial dependence found in the realized variances based on the high sampling
frequencies suggests a strong dependence in the bias components of these es-
timators.

7.2. Speculative Analysis

The analysis in the previous subsection does not use all of the available data
efficiently, for the realized kernel is computed only on every 15 or so transac-
tions. This was carried out so that the empirical reality of the GE data matched
the assumptions of our feasible central limit theory, allowing us to calculate
daily confidence intervals. In this subsection, we give up on the goal of carrying
out inference and simply focus on estimating [Y ] by employing all of the data.
The results in Section 5.3 suggest our efficient realized kernel can do this, even
though the U ∈ W N and Y ⊥⊥U are no longer empirically well-grounded as-
sumptions. For these robust estimators, we selectH = c0n

2/3, where we use the
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TABLE XI

SUMMARY STATISTICS FOR SIX REALIZED KERNELS BASED ON RETURNS MEASURED
EVERY STH TRANSACTION, WHERE S IS SELECTED SUCH THAT RETURNS SPAN

60 SECONDS ON AVERAGEa

δ Average Std. (HAC) Ĉorr(·�TH2) acf(1) acf(2) acf(5) acf(10)

Tukey–Hanning2 kernel (H = cξn1/2)
≈ 1 minute 0.908 0.541 (1.168) 1.000 0.34 0.38 0.28 0.09
Parzen kernel (H = cξn1/2)
≈ 1 minute 0.914 0.546 (1.182) 0.999 0.35 0.37 0.28 0.09
Cubic kernel (H = cξn1/2)
≈ 1 minute 0.915 0.542 (1.172) 0.998 0.35 0.37 0.28 0.09
5th order kernel (H = cξn1/2)
≈ 1 minute 0.919 0.530 (1.160) 0.999 0.36 0.39 0.29 0.09
8th order kernel (H = cξn1/2)
≈ 1 minute 0.912 0.550 (1.185) 0.995 0.34 0.38 0.28 0.09
Bartlett kernel (H = cξ2n2/3)
≈ 1 minute 0.934 0.551 (1.192) 0.988 0.36 0.35 0.27 0.08

Simple realized variance = γ0(Xδ)
20 minutes 0.879 0.524 (1.008) 0.794 0.28 0.24 0.26 0.06
5 minutes 0.948 0.518 (1.100) 0.954 0.36 0.34 0.26 0.10
1 minute 0.941 0.382 (0.919) 0.887 0.44 0.40 0.38 0.11
10 seconds 1.330 0.389 (1.142) 0.803 0.60 0.56 0.51 0.32
1 tick 2.183 0.569 (1.828) 0.733 0.69 0.66 0.57 0.48

aThe same statistics are computed for the realized variance using five different values for δ. The realized vari-
ance based on all tick-by-tick data is identical to the realized variance with δ= 1 second. The empirical correlations
between the realized Tukey–Hanning2 kernel and each of the estimators are given in column 4 and some empirical
autocorrelations are given in columns 5–8.

same values for c0 = c∗ξ as in the previous subsection. Inevitably then, the re-
sults in this subsection will be more speculative than those given in the previous
analysis.

We calculate the realized kernel using every transaction on each day, based
on returns sampled roughly every 60 seconds, or by applying the kernel weights
to returns sampled every transaction. The time series of these estimators are
drawn in Figure 4, together with the corresponding bias corrected two scale
estimator and a subsampled version of the realized variance estimator using
5 minute returns, where the degree of subsampling was selected to exhaust
the available data. For the sake of comparison, we also include the confidence
intervals from Figure 3.

Figure 4 shows that realized kernels give very similar estimates—on some
days the estimates are almost identical. The two scale estimators by Zhang,
Mykland, and Aït-Sahalia (2005) are quite biased because they rely on the
white noise assumption, which is at odds with tick-by-tick data. The two scale
estimators by Aït-Sahalia, Mykland, and Zhang (2006) are designed to be ro-
bust to serial dependence in U . The bias observed in the unadjusted estimator
is ascribed to the bias of ω̂2, as we discussed in Section 5.1. The bias is over-



1520 BARNDORFF-NIELSEN, HANSEN, LUNDE, AND SHEPHARD

FIGURE 4.—Four estimators for the daily increments to [Y ] for General Electric in November
2004. The intervals are the confidence intervals forK(Xδ) using Tukey–Hanning2 weights and re-
turns sampled roughly every 60 seconds. Triangles denote averages of S distinct realized kernels,
where each of the estimators is based on returns that span S transactions. Diamonds represent
K(Xδ) using δ = 1 tick. Circles are averages of 1,200 realized variances using δ = 20 minutes,
where the individual RVs are obtained by shifting the times prices are recorded by 1 second at
a time. Squares represent the bias adjusted two scale estimator; see Aït-Sahalia, Mykland, and
Zhang (2006, eq. 4.22).

come by the “area adjusted” version of this estimator, which seems in line with
the results for the realized kernels and the subsampled random variable (RV)
estimators.10 Table XII provides summary statistics of these estimators. The
realized kernels are pretty robust to choice of the design of the weights.

8. CONCLUSIONS

In this paper we have provided a detailed analysis of the accuracy of realized
kernels as estimators of quadratic variation when an efficient price is obscured
by simple market frictions. We show how to make these estimators consistent

10In empirical work we found this estimator to be sensitive to the choice of K. To be consis-
tent with our empirical findings, J has to be about 15 (yielding returns measured roughly over 1
minute). The estimator in Aït-Sahalia, Mykland, and Zhang (2006) needs K > J and the theory
relies on K/J → ∞. Unfortunately, their formula for choosing K typically selects a value smaller
than J. So we imposed K ≥ 5J, which worked well in our empirical analysis.
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TABLE XII

TWELVE ESTIMATORS THAT MAKE USE OF ALL AVAILABLE (TICK-BY-TICK) DATA
BENCHMARKED AGAINST THE REALIZED KERNEL IN THE FIRST ROW, WHICH

IS BASED ON RETURNS THAT SPAN 1 MINUTE ON AVERAGEa

δ Average Std. (HAC) Ĉorr(·�TH2) acf(1) acf(2) acf(5) acf(10)

Tukey–Hanning2 kernel (H = cξn1/2)
≈ 1 minute 0.908 0.541 (1.168) 1.000 0.34 0.38 0.28 0.09
Tukey–Hanning2 kernel (inefficient rate H = cξn2/3)
1 tick 0.894 0.497 (1.104) 0.991 0.37 0.38 0.32 0.09
Parzen kernel (inefficient rate H = cξn2/3)
1 tick 0.901 0.502 (1.111) 0.990 0.37 0.37 0.31 0.09
Cubic kernel (inefficient rate H = cξn2/3)
1 tick 0.907 0.505 (1.115) 0.991 0.37 0.37 0.30 0.09
5th order kernel (inefficient rate H = cξn2/3)
1 tick 0.910 0.507 (1.121) 0.989 0.37 0.37 0.30 0.09
8th order kernel (inefficient rate H = cξn2/3)
1 tick 0.908 0.549 (1.183) 0.996 0.34 0.36 0.28 0.09

Subsampled realized variance
20 minutes 0.885 0.516 (1.036) 0.933 0.27 0.27 0.27 0.08
5 minutes 0.943 0.503 (1.088) 0.984 0.37 0.32 0.30 0.08
1 minute 0.942 0.376 (0.921) 0.899 0.46 0.43 0.38 0.12

ZMA 2005 TSRV(K�1)
1 tick 0.544 0.321 (0.711) 0.842 0.40 0.34 0.29 0.05
1 tick (adj) 0.596 0.353 (0.784) 0.854 0.40 0.34 0.29 0.04

AMZ 2006 TSRV(K�J)
1 tick 0.736 0.436 (0.929) 0.944 0.33 0.35 0.28 0.11
1 tick (aa) 0.946 0.560 (1.194) 0.944 0.33 0.35 0.28 0.11

aThe realized kernels using δ= 1 tick apply a large H to counteract possible dependence in U . The subsampled
realized variances make use of all available data by changing the initial place at which prices are recorded and average
the resulting estimates. For example, when δ= 5 minutes, the subsampled RV is an average of 300 estimates, obtained
by shifting the times at which prices are recorded by 1 second at a time. The four two scale estimators are those of
Zhang, Mykland, and Aït-Sahalia (2005, equations 55 and 64) and Aït-Sahalia, Mykland, and Zhang (2006, equations
4.4 and 4.22), where the last two are designed to be robust to dependence in U . The estimators identified by (adj) and
(aa) involve finite sample bias corrections.

and derive central limit theorems for the estimators under various assump-
tions about the kernel weights. Such estimators can be made to converge at
the fastest possible rate and be efficient. They can be made robust to dynam-
ics in the noise process, robust to endogenous market frictions, and robust to
endogenous spacing in the timing of the data.

Our efficient feasible central limit theory for our estimators performed sat-
isfactorily in Monte Carlo experiments designed to assess finite sample behav-
ior. The realized kernel was shown to be consistent under rather broad as-
sumptions on the dynamics of the noise term. We have applied the estimator
empirically, using 60 second return data on General Electric transaction data
for 2004. Feasible inference for our realized kernel is compared with that for a
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simpler realized variance estimator based on 20 minute returns. The empirical
results suggest that the realized kernel estimator is more accurate. Its serial
correlation suggests that the realized kernel may be useful for forecasting, fol-
lowing Andersen, Bollerslev, Diebold, and Labys (2001). The economic value
of such forecast improvements has been documented in Bandi, Russell, and
Yang (2007).

There are many possible extensions to this work, for example, multivariate
versions of these results which deal with the scrambling effects discussed by,
for example, Hayashi and Yoshida (2005), Bandi and Russell (2005), Zhang
(2005), Sheppard (2006), Voev and Lunde (2007), and Griffin and Oomen
(2006) and derive an asymptotically efficient estimator for the case with tem-
poral dependence in U .

APPENDIX A: STABLE CONVERGENCE

The concise mathematical definition of stable convergence is as follows. Let
{Xn} denote a sequence of random variates defined on a probability space
(Ω�F�P) and taking values in a Polish space (E�E),11 and let G be a sub-σ-
field of F . Then Xn is said to converge G -stably in law if there exists a proba-
bility measure μ on (Ω×E�F ×E) such that for every boundedG-measurable
random variable12 V on (Ω�F�P) and every bounded and continuous func-
tion f on E we have that, for n→ ∞,

E{Vf(Xn)} →
∫
V (ω)f (x)μ(dω�dx)�(A.1)

If Xn converges stably in law, then, in particular, it converges in distribution (or
in law or weak convergence), the limiting law being μ(Ω� ·). Accordingly, one
says that Xn converges stably to some E-valued random variate X on Ω× E,

written Xn

LG→ X provided X has law μ(Ω� ·). Things can always be set up so
that such a random variate X exists.

This concept and its extension to stable convergence of processes is discussed
in Jacod and Shiryaev (2003, pp. 512–518). For earlier discussions see, for
example, Rényi (1963), Aldous and Eagleson (1978), Hall and Heyde (1980,
pp. 56–58), and Jacod (1997). An early use of this concept in econometrics
was Phillips and Ouliaris (1990). It is used extensively in Barndorff-Nielsen,
Graversen, Jacod, and Shephard (2006).

However, the above formalization does not reveal the key property of stable
convergence which is that convergence G -stably in law to X is equivalent13 to

11That is, E is a complete separable metric space and E denotes the Borel σ-algebra of E.
12As is common, we take random variable to mean a real-valued random variate. We use capital

Roman letters to denote random variables or vectors and capital Frakturs to denote general
random variates.

13See Jacod and Shiryaev (2003, Proposition 5.33, pp. 512–518).
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the statement that for anyG-measurable random variableW , the pair (W �Xn)
converges in law to (W �X ).

The following results are helpful in the use we wish to make of this concept.
Let {Yn} and {Zn} denote two sequences of random variates on (Ω�F�P)

and with values in (E�E), and suppose that Yn

LG→ Y for some sub-σ-field G
of F .

LEMMA 1: If Yn

LG→ Y and {Wn} is a sequence of positive random variables on
(Ω�F�P) tending in probability to a positive G -measurable random variable W
such that Wn/W

p→ 1, then WnYn
L→W Y .

PROOF: By the definition of G -stable convergence, we have that (W �Yn)
L→

(W �Y) and therefore that W Yn
L→ W Y . Since WnYn = (Wn/W )W Yn and

Wn/W
p→ 1, we have WnYn

L→W Y . Q.E.D.

LEMMA 2: If E is a normed vector space and if Zn

p→ 0, then Yn + Zn

LG→ Y .

PROOF: The proof follows simply from the defining condition (A.1), using
the tightness of {Yn}. Q.E.D.

LEMMA 3: If Zn
L→ Z and if {Yn} and {Zn} are independent, then Yn + Zn

LG→
Y + Z .

PROOF: We have Yn

LG→ Y if and only if (W �Yn)
L→ (W �Y) for all G -

measurable random variables W on Ω. Since (W �Yn) ⊥⊥ Zn and Zn
L→ Z , it

follows that (W �Yn�Zn)
L→ (W �Y�Z). This implies (W �Yn + Zn)

L→ (W �Y +
Z) for all G -measurable W which is equivalent to Yn + Zn

LG→ Y + Z . Q.E.D.

DEFINITION 5: Let {Zn} be a sequence of d-dimensional random vectors on
(Ω�F�P). We say that the conditional law ofZn given G converges in probabil-
ity provided there exists a G -measurable characteristic function φ(ζ|G) (possi-
bly defined on an extension of (Ω�F�P)) such that for all ζ ∈ R

d ,

φn(ζ|G) p→φ(ζ|G)�(A.2)

where φn(ζ|G)= E{eiζZn |G}.

REMARK: We can, without restriction, assume that there exists a d-dimen-
sional random vector Z, defined on (Ω�F�P) or an extension thereof, such
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that φ(ζ|G) is the conditional characteristic function of Z given G . Then we
also write (A.2) as

L(Zn|G) p→ L(Z|G)�

where L{·|G} means conditional law given G .

PROPOSITION 5: Let {Yn} and {Zn} be sequences of random vectors. Suppose

Yn
LG→ Y and L{Zn|G} p→ L{Z|G}. Then (Yn�Zn)

LG→ (Y�Z).

PROOF: Let W be an arbitrary G -measurable random variable. For all
η�ζ�ψ ∈ R and n → ∞, it must be verified that E{eiηYn+iζZn+iψW } →
E{eiηY+iζZ+iψW }. Now,

E
(
eiη

Yn+iζZn+iψW )− E
(
eiη

Y+iζZ+iψW )
= E

(
eiη

Yn+iζZn+iψW )− E
(
eiη

Yn+iζZ+iψW )
+ E

(
eiη

Yn+iζZ+iψW )− E
(
eiη

Y+iζZ+iψW )
= E

[
eiη

Yn+iψW {φn(ζ|G)−φ(ζ|G)}]+ E
{
eiη

Yn+iψW φ(ζ|G)
}

− E
{
eiη

Y+iψW φ(ζ|G)
}
�

By (A.2),∣∣E[eiηYn+iψW {φn(ζ|G)−φ(ζ|G)}]∣∣ ≤ E
{∣∣φn(ζ|G)−φ(ζ|G)

∣∣}
→ 0�

Moreover, since Yn
LG→ Y , it holds that E{eiηYn+iψW φ(ζ|G)} − E{eiηY+iψW ×

φ(ζ|G)} → 0. Q.E.D.

REMARK: The conclusion of the proposition holds not only for random vari-
ables Yn and Zn, but extends to general random variates. In the present paper
such an extension is, however, not required.

APPENDIX B: PROOFS

PROOF OF THEOREM 1: We first show the stated separate limit results
for δ−1/2Γδ�H , γ(Yδ�Uδ) + γ(Uδ�Yδ) and δ1/2{γ(Uδ) − Eγ(Uδ)}. Consider
γ(Yδ) = δ

∑n

j=1 f (�
n
j−HY/

√
δ� � � � ��nj+HY/

√
δ), where �nj Y = Yjδ − Y(j−1)δ

and f (yj−H� � � � � yj� � � � � yj+H)= {y2
j � yj(yj−1 + yj+1)� � � � � yj(yj−H + yj+H)}. Since

f (a� � � � � z) = f (−a� � � � �−z), we can apply Jacod (2007, Theorem 7.1.a) to
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establish the stable convergence for γ(Yδ); see also Kinnebrock and Podol-
skij (2008). The asymptotic variance is deduced from

∑2H
l=−2H E(f0fl )− (4H +

1)E(f0)E(f0 )= σ4 diag(2�4� � � � �4), where we define fl = f (Zl� � � � �Z2H+l) with
{Zj} ∼ i�i�d�N(0�σ2). This result and Jacod (2007, eq. 7.1 and 7.3) yield the as-
ymptotic variance, 2

∫ t
0 σ

4
u du×A.

In considering the cross-term γ(Yδ�Uδ) + γ(Uδ�Yδ), let γ̄(Yδ�Uδ) =
γ0(Yδ)

−1/2γ(Yδ�Uδ) and ȳj = γ0(Yδ)
−1/2�nj Y , where

γ̄(Yδ�Uδ)=
n∑
j=1

ȳj

⎛⎜⎜⎜⎝
Ujδ −U(j−1)δ

U(j+1)δ −Ujδ +U(j−1)δ −U(j−2)δ
���

U(j+H)δ −U(j+H−1)δ +U(j−H)δ −U(j−H−1)δ

⎞⎟⎟⎟⎠
and the coefficients ȳj are uniformly asymptotically negligible for almost all
realizations of Y . Standard central limit theory then yields that, condition-
ally on Y , γ̄(Yδ�Uδ)

L→N(0�2ω2B). Since γ(Yδ�Uδ)− γ(Uδ�Yδ)= op(1) and
γ0(Yδ)

p→ [Y ]t this implies that almost surely

γ0(Yδ)
−1/2(γ(Yδ�Uδ)+ γ(Uδ�Yδ))

L→N(0�8ω2B)�

Next we consider the pure noise term, γ(Uδ). Define Vh = ∑n−h−1
j=1 UjδU(j+h)δ,

h ≥ 0, Wh = ∑h−1
j=1 U(j−h)δUjδ + ∑n

j=n−h+1UjδU(j+h)δ, h ≥ 1, and Zh = U0Uhδ +
UtU(n−h)δ, h ∈ Z, where all terms are mutually uncorrelated. Then γ0(Uδ) =
(2V0 − 2V1)+ (Z0 − 2Z1) and

γ1(Uδ)+ γ−1(Uδ)

= (−2V0 + 4V1 − 2V2)+ (−W2)+ (Z−1 −Z0 + 3Z1 − 2Z2)�

γh(Uδ)+ γ−h(Uδ)

= (−2Vh−1 + 4Vh − 2Vh+1)+ (−Wh−1 + 2Wh −Wh+1)

+ (Z−h −Z−h+1 −Zh−1 + 3Zh − 2Zh+1)� h≥ 2�

so that γ(Uδ)= γV (Uδ)+ γW (Uδ)+ γZ(Uδ), where

γV (Uδ)= 2(V0 − V1�−V0 + 2V1 − V2� � � � �−VH−1 + 2VH − VH+1)
�

γW (Uδ)= (0�−W0 + 2W1 −W2� � � � �−WH−1 + 2WH −WH+1)
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(using the convention W0 =W1 = 0), and

γZ(Uδ)=

⎛⎜⎜⎜⎜⎜⎝
Z0 − 2Z1

Z−1 −Z0 + 3Z1 − 2Z2

Z−2 −Z−1 −Z1 + 3Z2 − 2Z3
���

Z−H −Z−H+1 −ZH−1 + 3ZH − 2ZH+1

⎞⎟⎟⎟⎟⎟⎠ �

We have Var(V0) = (n− 1)λ2ω4 and Var(Vh) = (n− h− 1)ω4 for h ≥ 1, and
similarly Var(W0)= 0 and Var(Wh)= 2ω4(h− 1) for h ≥ 1. It is now straight-
forward to show that

Var{γV (Uδ)} = 4ω4(nC +D(V )) and Var{γW (Uδ)} = 4ω4D(W )�

where

DV
11 =

(−λ2 − 2 •
λ2 + 4 −λ2 − 11

)
� DW

11 =
(

0 •
0 1

2

)
�

DV
21 =

⎛⎜⎜⎝
−2 10
0 −3
0 0
���

���

⎞⎟⎟⎠ � DW
21 =

⎛⎜⎜⎝
0 −1
0 1

2

0 0
���

���

⎞⎟⎟⎠ �

DV
22 =

⎛⎜⎜⎜⎜⎝
−18 • • • •
14 −24 • • •
−4 18 −30 • •
0 −5 22 −36 •
���

� � �
� � �

� � �
� � �

⎞⎟⎟⎟⎟⎠ �

and

DW
22 =

⎛⎜⎜⎜⎜⎜⎝
3 • • • •

−3 6 • • •
2
2 −5 9 • •
0 3

2 −7 12 •
���

� � �
� � �

� � �
� � �

⎞⎟⎟⎟⎟⎟⎠ �

Finally U0 and Ut are both averages of m independent noise terms, so
that Var(U2

0 ) = m−3λ2ω4 + 4m−4 (m−1)m
2 ω4 = m−3(λ2 − 2)ω4 + 2m−2ω4 and
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Var(U0Uhδ)=m−1ω4 for j �= 0, and similarly for UtUt−hδ terms. So

Var(Zh)= Var(U0Uhδ +UtUt−hδ)

=
⎧⎨⎩4m−2ω4

{
m−1

(
λ2

2
− 1

)
+ω4

}
� h= 0,

2m−1ω4� h �= 0,

whereby Var{γZ(Uδ)} = 4ω4m−1E follows. Using that the various terms are
uncorrelated, we have Var{γ(Uδ)} = 4ω4(nC +D+m−1E), where D=DV +
DW .

Finally we verify that jointly δ−1/2Γδ�H , γ(Yδ�Uδ) + γ(Uδ�Yδ) and
δ1/2{γ(Uδ)−Eγ(Uδ)} converge σ(Y)-stably. On account of Proposition 5, we
can conclude that the joint law of δ−1/2Γδ�H and [Yδ]−1/2

t (γ(Yδ�Uδ)+γ(Uδ�Yδ))
converges σ(Y)-stably. By Lemma 1 we then obtain that δ−1/2Γδ�H and
γ(Yδ�Uδ)+γ(Uδ�Yδ) jointly converge σ(Y)-stably. Finally, since δ1/2{γ(Uδ)−
Eγ(Uδ)} L→ N(0�4ω2C), a further application of Proposition 5 gives that
δ−1/2Γδ�H , γ(Yδ�Uδ)+ γ(Uδ�Yδ) and δ1/2{γ(Uδ)− Eγ(Uδ)} are jointly σ(Y)-
stably convergent. Q.E.D.

PROOF OF THEOREM 2: wAw = 2k0�0
• follows from the diagonal structure

of A. Next wBw=∑H−1
h=1 {k(H

H
)− k(H−1

H
)}2 gives the second result. The third

result follows from

wCw =
{
k

(
0
H

)
− 2k

(
1
H

)
+ k

(
1
H

)2}

+
H−1∑
h=1

{
k

(
h− 1
H

)
− 2k

(
h

H

)
+ k

(
h+ 1
H

)}2

+
{
k

(
H

H

)
−
(
k

(
H − 1
H

)}2

�

With DV and DW defined in the proof of Theorem 1 and D =DV +DW , the
fourth result follows from

−wDVw= 0 + 2
{
k

(
1
H

)
− k

(
0
H

)}2

+ (H + 2)
{
k

(
H

H

)
− k

(
H − 1
H

)}2

+
H−1∑
h=1

(h+ 2)
{
k

(
h− 1
H

)
− 2k

(
h

H

)
+ k

(
h+ 1
H

)}2

�
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wDWw= 1
2

H−1∑
h=1

h

{
k

(
h− 1
H

)
− 2k

(
h

H

)
+ k

(
h+ 1
H

)}2

+ 1
2
H

{
k

(
H

H

)
− k

(
H − 1
H

)}2

�

The last result follows from wEw = {k( 1
H
) − k( 0

H
)}2 + ∑H

h=1{k( hH ) −
k(h−1

H
)}2 +∑H−1

h=1 {k(h−1
H
)− 2k( h

H
)+ k(h+1

H
)}2 + {k(H

H
)− k(H−1

H
)}2. Q.E.D.

LEMMA 4: Let an�h be a nonstochastic array with
∑H

h=1 a
2
n�h �= 0, where H may

depend on n. Then as n→ ∞,

n∑
j=1

ζn�j
L→N(0�ω4)�

where

ζn�j = n−1/2Ujδ

H∑
h=1

an�hU(j−h)δ

/√√√√ H∑
h=1

a2
n�h�

PROOF: The array {ζn�j�Fn�j} is a martingale difference when we set Fn�j =
σ(Ujδ�U(j−1)δ� � � �). It can now be shown that

n∑
j=1

E
(
ζ2
n�j|Fn�j−1

)=ω2n−1
n∑
j=1

(
H∑
h=1

a2
n�hU

2
(j−h)δ

)/ H∑
h=1

a2
n�h

p→ω4�

n∑
j=1

E
{
ζ2
n�j1(|ζn�j| ≥ ε)

}≤ ε−2
n∑
j=1

E|ζn�j|4 =O(n−1)�

where we used Minkowski’s inequality. This verifies the two conditions of
Billingsley (1995, Theorem 35.12) and the result follows. Q.E.D.

PROOF OF THEOREM 3: The result for K(Yδ) follows from Theorems
1 and 2 extended to the case whereH ∝ nγ for γ = 1/2 and γ = 2/3. See Jacod
(2008) for a general treatment of results of this kind. Next, for the cross-term,
K(Yδ�Uδ)+K(Uδ�Yδ), we can use the same trick as in the proof of Theorem 1,
by deriving the limit distribution γ0(Yδ)

−1/2H1/2K(Yδ�Uδ)
L→ N(0�2k1�1

• ω
2)

(for almost all Y ) and usingK(Yδ�Uδ)−K(Uδ�Yδ)= op(H−1/2). The last term
is more involved. We have

K(Uδ)= −
H∑
h=1

(wh+1 − 2wh +wh−1)Vh�n −
H∑
h=1

(wh+1 −wh−1)Rh�n�(A.3)
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where wh = k(h−1
H
), Vh�n = 1

2

∑n

j=1(UjδU(j−h)δ + UjδU(j+h)δ + U(j−1)δU(j−1−h)δ +
U(j−1)δU(j−1+h)δ), and Rh�n = 1

2 {U0(U−hδ − Uhδ) + Ut(Ut+hδ − Ut−hδ)}. The last
term in (A.3) is due to end-effects, and we have

H1/2
H∑
h=1

(wh+1 −wh−1)Rh�n(A.4)

= U0

H1/2

H∑
h=1

wh+1 −wh−1

2/H
(U−hδ −Uhδ)

+ Ut

H1/2

H∑
h=1

wh+1 −wh−1

2/H
(Ut+hδ −Ut−hδ)�

which, conditionally on U0 and Ut , converges in law to MN{0� (U2
0 +U2

t )2ω
2 ×

k1�1
• }.
Case k′(0)2 +k′(1)2 �= 0: WithH ∝ n2/3, the end-effect, (A.4), vanishes. Now

rewrite Hn−1/2
∑H

h=1(wh+1 − 2wh +wh−1)Vh�n as

w2 −w1

1/H
n−1/2V1�n − wH −wH−1

1/H
n−1/2VH�n(A.5)

+
H−1∑
h=2

(
wh+1 −wh

1/H
− wh −wh−1

1/H

)
n−1/2Vh�n�

The result now follows from n−1/2Vh�n = 2n−1/2
∑n

j=1UjδU(j−h)δ + op(1)
L→

N(0�4ω4), H(w2 − w1) → k′(0), H(wH − wH−1) → k′(1), Cov(n−1/2Vh�n�
n−1/2Vl�n)= 0 for h �= l, and the fact that last term of (A.5) vanishes in proba-
bility.

Case k′(0)2 + k′(1)2 = 0: The contribution to the asymptotic variance
from (A.4) is proportional to U2

0 + U2
t . Since E{(U2

0 + U2
t )

2} = O(m−2), this
term vanishes whenm→ ∞. Next, set ah�n = 2H3/2(wh+1 − 2wh +wh−1) so that

(n/H3)−1/2
H∑
h=1

(wh+1 − 2wh +wh−1)Vh�n

=
n∑
j=1

n−1/2Ujδ

H∑
h=1

an�hU(j−h)δ + op(1)�

The result now follows by Lemma 4 and the fact that
∑n

h=1 a
2
n�h → 4k2�2

• .
Q.E.D.
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PROOF OF THEOREM 4: The convergence of the individual terms follow
from Theorem 3, and the stable convergence for the sum of the three terms
follows by Lemma 1 and Proposition 5, using the same arguments as those in
our proof of Theorem 1. Q.E.D.

PROOF OF PROPOSITION 1: To achieve the fastest rate of convergence, we
need k′(0) = 0. With H = cξ

√
n, the asymptotic variance of the resulting re-

alized kernel estimator is that in (14), ω(t
∫ t

0 σ
4
u du)

3/44(ck0�0
• + 2c−1ρk1�1

• +
c−3k2�2

• ). In the parametric version of the problem, ρ= 1, integration by parts
gives us,

4(ck0�0
• + 2c−1k1�1

• + c−3k2�2
• )= 4c

∫ ∞

0
{k(x)− c−2k′′(x)}2 dx�

So determining the optimal kernel function for this case amounts to solving
the calculus of variation problem

min
k

∫ ∞

0
F(x�k(x)�k′(x)�k′′(x))dx s.t. k(0)= 1 and k′(0)= 0�

where F(x�k(x)�k′(x)�k′′(x)) = {k(x) − c−2k′′(x)}2. The generalized Euler
equation for this problem is

0 = ∂F

∂k
− d

dx

∂F

∂k̇
+ d2

dx2

∂F

∂k̈

= 2{k(x)− c−2k′′(x)} − 0 − 2c−2 d
2

dx2
{k(x)− c−2k′′(x)}

= 2k(x)− 2c−2k′′(x)− 2c−2k′′(x)+ 2c−4k(4)(x)

= 2k(x)− 4c−2k′′(x)+ 2c−4k(4)(x)�

where k̇ = k′(x) and k̈ = k′′(x). The four roots of the corresponding charac-
teristic polynomial, 1 − 2λ2/c2 + λ4/c4 = 0, are λ1�2 = ±c and λ3�4 = ±ic. So
we seek a solution in the form C1e

cx + C2xe
cx + C3e

−cx + C4xe
−cx. We need

C1 = C2 = 0 to rule out the explosive solutions, and k(0) = 1 implies C3 = 1.
Finally, from k′(0)= 0, we find ∂(e−cx +C4xe

−cx)/∂x|x=0 = C4 − c = 0, so that
C4 = c. Hence the relevant solution is kc(x) = e−cx + cxe−cx = (1 + cx)e−cx.
We note that 4c

∫ ∞
0 {kc(x)− c−2k′′

c (x)}2 dx= 8 does not depend on c, so we are
free to choose the scale. We choose c = 1, and the resulting kernel function,
k(x) = (1 + x)e−x, has k0�0

• = 5
4 , k1�1

• = 1
4 , and k2�2

• = 1
4 . Consistent with c = 1,

we find that the expression (16) leads to

c∗ =
√√√√k1�1•
k0�0•

{
1 +

√
1 + 3k0�0• k2�2•

(k1�1• )2

}
=
√

1
5
{1 + √

16} = 1�
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and, finally, we find that

g = 16
3

√
k0�0• k1�1•

{
1√

1 +√
1 + 3k0�0• k2�2• /(k1�1• )2

+
√√√√1 +

√
1 + 3k0�0• k2�2•

(k1�1• )2

}

= 16
3

√
5

16

{
1√

1 + √
1 + 15

+
√

1 +
√

1 + 15
}

= 8�

so that the realized kernel based on this kernel function achieves the paramet-
ric efficiency bound. Q.E.D.

PROOF OF PROPOSITION 2: The cadlag property of υ follows by direct argu-
ment. Further, by Lebesgue’s theorem, the integral (23) is the same whether
interpreted as a Riemann integral or a Lebesgue integral. With the latter
interpretation, we find Υt = ∫ t

0 σ
2
Tu
τ2
u du = ∫ t

0 σ
2
Tu
dTu = ∫ Tt

0 σ2
u du = S ◦ Tt .

Q.E.D.

PROOF OF PROPOSITION 3: With

ah�H =H−1/2

k

(
h+ 1
H

)
− k

(
h− 1
H

)
2/H

� so that
H∑
h=1

a2
h�H → k1�1

• �

we see from (A.4) that the second term in the kernel representation (A.3) is
Op(H

−1/2). Consider now the first term in (A.3). We have Vh�n = 2
∑n

i=1Ujδ ×
U(j−h)δ +Op(1), so the first term is (−1 times)

H∑
h=1

{
k

(
h

H

)
− 2k

(
h− 1
H

)
+ k

(
h− 2
H

)}
Vh�n

=
H∑
h=1

{
k

(
h

H

)
− 2k

(
h− 1
H

)
+ k

(
h− 2
H

)}
{2nγ̄h +Op(1)}

= n

H2

H∑
h=1

k′′
(
h

H

)
γ̄h +Op

(
n

H3

)
+Op(H−1)�

where we used the notation γ̄h = n−1
∑n

i=1UiδU(i−h)δ. Q.E.D.
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PROOF OF PROPOSITION 4: Let γ̄h = n−1
∑n

i=1UiδU(i−h)δ. Since k′′(0) = 0,
we have

− n

H2

∑
|h|≤H̄

k′′
(
h

H

)
γ̄h = − n

H3

∑
|h|≤H̄

k′′′(0)|h|γ̄h +Op
(
n

H3

)

= Op

(
n

H3

)
�

This leaves us thinking of
∑

H≥|h|>H̄ k
′′( h

H
)γ̄h. From Bartlett (1946) we know

that for k> h,

√
n

(
γ̄h − Eγ̄h
γ̄k − Eγ̄k

)
L→N

{(
0
0

)
�

ω4
∞∑

j=−∞

(
ρ2
h + ρj+hρj−h ρjρj+(k−h) + ρj+kρj−h

ρjρj+(k−h) + ρj+kρj−h ρ2
j + ρj+kρj−k

)}
�

where ρj denotes the population autocorrelation. In the AR(1) case, with per-
sistence parameter |ϕ|< 1 then it is well known that this simplifies to

√
n

(
γ̄h −ϕhω2

γ̄k −ϕkω2

)
L→N

{(
0
0

)
�2ω4 1 +ϕ2

1 −ϕ2

(
1 ϕk−h

ϕk−h 1

)}
�

noting
∑∞

j=−∞ϕ
2j = (1+ϕ2)/(1−ϕ2). Since limH→∞

∑
H≥h>H̄ k

′′( h
H
)ϕh = 0, the

impact of the serial dependence is that√
n

H

{ ∑
H≥h>H̄

2k′′
(
h

H

)
γ̄h

}
L→N

(
0�4ω4 1 +ϕ2

1 −ϕ2
k2�2

•

)
�

This implies −(n/H2)
∑

|h|≤H̄ k
′′( h

H
)γ̄h = Op(n

1/2/H3/2). Overall we have
Op(n

1/2H−3/2)+Op(nH−3)+Op(H−1/2). PlacingH ∝ n1/2 delivers a term which
is Op(n−1/4). Since |ϕ|< 1, we continue to have U0�Ut =Op(m−1/2) with jitter-
ing, so the end-effect vanishes at the proper rate. Q.E.D.
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