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An economic time series can often be viewed as a noisy proxy for an underlying
economic variable. Measurement errors will influence the dynamic properties of the
observed process and may conceal the persistence of the underlying time series. In
this paper we develop instrumental variable (IV) methods for extracting information
about the latent process. Our framework can be used to estimate the autocorrelation
function of the latent volatility process and a key persistence parameter. Our analysis
is motivated by the recent literature on realized volatility measures that are imperfect
estimates of actual volatility. In an empirical analysis using realized measures for the
Dow Jones industrial average stocks, we find the underlying volatility to be near unit
root in all cases. Although standard unit root tests are asymptotically justified, we
find them to be misleading in our application despite the large sample. Unit root
tests that are based on the IV estimator have better finite sample properties in this
context.

1. INTRODUCTION

Many economic time series are constructed from survey statistics or composed of
estimates that involve sampling error. It is natural to view such time series as prox-
ies for the underlying population quantities. In this paper we develop instrumental
variable (IV) methods that facilitate the analysis of two features of the underlying
time series: the persistence of the latent time series and its autocorrelation func-
tion. The instrumental variables are lagged value of the observed time series that
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take advantage of moment restrictions, known as multiperiod conditional moment
restrictions, see Hansen (1985).

To take a concrete example, consider a daily time series of realized variances.
Each element of this time series can be viewed as a noisy estimate of the latent
volatility. Much progress has recently been made in estimating financial volatility
from high-frequency data using realized measures, such as the realized variance.
Despite this progress, it is important to discriminate between the realized measure
of volatility and the underlying population quantity. The most accurate estimators
of daily volatility that utilize thousands of high-frequency prices produce esti-
mates for which the standard error is rarely less than 10% of the point estimate;
see, e.g., Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008). Measurement
errors of this magnitude cause the autocorrelation function of the observed time
series to look distinctively different from that of the underlying time series.

The methods used in this paper are best suited for situations where the latent
process is persistent, because nonzero autocorrelations are needed for these in-
struments to be valid. In fact, the more persistent is the latent time series, the
“stronger” will these instruments be, other things being equal. We focus on two
aspects of the problem. First, we show that the IV methods provide an effective
way to assess the degree of persistence for the latent time series. An implication
is that unit root tests based on IV regression methods have better finite sample
properties than conventional tests. Second, we propose an alternative estimator
of the autocorrelation function (ACF) for the latent time series. This estimator is
more informative about the ACF of the latent process, in particular if the process
is persistent.

Our basic framework is simple: We model the latent time series, yt , as an
ARMA(p,q) process and the measurement error as white noise. Our first objective
is to estimate a key persistence parameter that we denote by π . The IV estimator
of π bypasses the need for estimating all autoregressive moving average (ARMA)
parameters, which is useful as these cannot be fully identified from the contam-
inated time series, without additional assumptions. Our second objective is to
derive an approximate estimator of the autocorrelation function for the latent pro-
cess. The empirical problem that has motivated this analysis is the situation where
the latent time series is daily volatility, whereas the observed time series is a se-
quence of realized measures, such as the realized variance, that are computed with
high-frequency data. Because each of these estimates is computed with different
high-frequency data (data from distinct days), it is reasonable to assume that their
sampling errors are uncorrelated. This structure arises in some rational expecta-
tions model, and our instrumental variables are exploiting what Hansen (1985)
called multiperiod conditional moment restrictions; see also Hansen, Heaton, and
Ogaki (1988), Hansen and Singleton (1996), and West (2001). For a survey of
this literature, see Anatolyev (2001). In the context of volatility models, Meddahi
and Renault (2004) derived these moment conditions (for squared returns) that
characterize a state space model where latent volatility is a linear combination
of factors that follow a VAR(1) process. However, Meddahi and Renault did not
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explore estimation and assumed the underlying factors to be stationary. See also
Bollerslev and Zhou (2002) and Meddahi (2003), who utilized similar restrictions
in the context of continuous time volatility models.

The analysis that we present in this paper is related to the literature on unit
root test in the context of moving average innovations. The unit root test based on
instrumental variables (that is very similar to ours) was proposed by Hall (1989),
and generalized by Phillips and Hansen (1990). Perron and Ng (1996) have
proposed another unit root test that is also robust to the sort of moving average
innovations that arises in this context. Our analysis is also related to the literature
on unobserved component models that deals with signal extraction, detrending,
and filtering of noisy time series (see, for example, Ashley and Vaughan, 1986;
Watson, 1986; Harvey, 2001; Harvey and Proietti, 2005; and Harvey and
De Rossi, 2006). In this strand of the literature the statistical treatment of the
underlying component is usually carried out by setting up the state space form
and applying the associated (Kalman) filter and smoothing algorithms. These
methods have been applied to realized measures of volatility by Barndorff-
Nielsen and Shephard (2002), Barndorff-Nielsen, Nielsen, Shephard, and Ysusi
(2004), Hansen and Lunde (2005b), and Koopman, Jungbacker, and Hol (2005).
These papers show that the measurement error (sampling error) is a nontrivial
component of the realized variance.

Our analysis contributes with new theoretical results that focus on the persis-
tence of the underlying process. The IV methods we develop in this paper com-
pliment existing methods and offer some advantages. For instance, the IV-based
autocorrelation function shares the simplicity and nonparametric nature of the
conventional empirical autocorrelation.

We make the following contributions: First, we propose simple instrumental
variable estimators of a key parameter that captures the persistence of ARMA
processes. For an AR(1) process the persistence parameter is simply the autore-
gressive coefficient. The persistence parameter can be estimated with simple IV
estimators, and for the ARMA(1,1) case we derive the optimal IV estimator that
exploits the particular covariance structure in this framework. Second, we pro-
pose an approximate ACF for the latent time series. This is important because
many economic time series can be viewed as noisy proxies of the fundamental
underlying process, and measurement errors can cause the ACF of the observed
time series to look distinctively different from that of the latent process. Third,
in our empirical analysis of realized measures of volatility, we find that actual
volatility is very close to having a unit root. In fact the largest autoregressive
root is typically in the range between 0.98 and 1.00. In this context, we show
that standard unit root tests can be very misleading. Conventional unit root tests
may be asymptotically justified in this context, but their finite sample properties
can be quite poor—even with a sample size that is well over a thousand observa-
tions. The main reason is that the measurement errors are relatively large in these
time series. Fourth, we make some remarks on fractionally integrated processes.
The popularity of fractionally integrated processes for the modeling of volatility
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is to some extent driven by two empirical observations: The shape of the ACF
for observed volatility, and the apparent rejection of the unit root hypothesis us-
ing conventional unit root tests. In this paper we argue that neither can be taken as
evidence of fractional integration. The reason is that a unit root process, or a local-
to-unit root process, can also induce these empirical features when the magnitude
of measurement errors is sufficiently large—a feature that resembles the famous
aggregation result by Granger (1980). In the context of daily measures of volatil-
ity and other time series where the degree of measurement error is pronounced,
we believe it is important to account for the measurements errors. In the con-
text of autoregressive fractionally integrated moving average (ARFIMA) models
this amounts to a serious modeling of the moving average (MA) part, which is
sometimes neglected in this literature. We do not, however, dismiss the fraction-
ally integrated model as a good model of daily volatility. In fact, our approximate
ACF estimates have features that are consistent with long memory processes, and
the instrumental variable unit root tests do reject the unit root hypothesis for most
of the volatility time series. So in this regard we arrive at the same conclusion as
Wright (1999).

This paper is organized as follows. In Section 2 we describe the theoretical
framework, introduce the instrumental variable estimator, and derive its asymp-
totic properties. In Section 3 we introduce a novel estimator of the autocorrela-
tion function for the latent time series and illustrate some of its advantages. In
Section 4 we present an empirical analysis with realized measures of volatility,
two macroeconomic time series of inflation, and two long time series of absolute
returns. We estimate the ACF for the underlying time series for all time series.
For the time series of realized measures, we show that the underlying volatility is
highly persistent and close to unit root in all cases. Concluding remarks are given
in Section 4, and an Appendix contains all proofs.

2. AN INSTRUMENTAL VARIABLE APPROACH TO ASSESSING
THE PERSISTENCE OF A LATENT TIME SERIES

In this section we study some methods for assessing the persistence of a time se-
ries that is measured with error. We consider a class of simple instrumental vari-
able estimators and show that these are consistent for the parameter that measures
the persistence.

We use an ARMA(p,q) specification for the latent time series, yt , and treat
the observed volatility, xt , as a noisy and possibly biased estimate of yt.. So our
model is

ϕ(L)(yt − δ) = θ(L)εt , (1)

xt = yt + ξ +ηt , (2)

where ϕ(L) and θ(L) are lag polynomial of orders p and q, respectively, δ and ξ
are constants, εt the innovations to the underlying process, and ηt represents the
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stochastic part of the measurement error. Precise assumptions about εt and ηt

will be stated in Assumption 1. In the context of time series of volatility, the
integrated variance for day t and a corresponding realized measure of volatility
can taken to be the latent process, yt , and the observed process, xt , respectively.
In our empirical analysis we study two types of realized measures, specifically,
the realized variance and the realized kernel.

The model has the following implication for the observed time series.

LEMMA 1. Given (1) and (2), we have

ϕ(L)(xt − δ − ξ) = θ(L)εt +ϕ(L)ηt . (3)

The lemma shows that xt is an ARMA process with exactly the same autore-
gressive polynomial. In the context of time series of volatility, this result was
noted in Barndorff-Nielsen and Shephard (2002) and Meddahi (2003); see also
Andersen, Bollerslev, and Meddahi (2004).

We make the following assumptions.

Assumption 1. The characteristic polynomials

ϕ(z) = 1−ϕ1z −·· ·−ϕpz p and θ(z) = 1− θ1z −·· ·− θq zq

do not have any roots in common and are such that

ϕ(z)
/

(1− z) = 0 ⇒ |z| > 1 and θ(1) �= 0,

and {εt ,ηt } is a sequence of independent and identically distributed random
variables with zero mean and σ 2

ε = var(εt ), σ 2
η = var(ηt ), and cov(εt ,ηt ) = 0.

With Assumption 1 we ensure that yt is either integrated of order zero, I(0),
or integrated of order one, I(1). The first part of the assumption allows ϕ(z) to
have a single unit root, ϕ(1) = 0, but the multiplicity of this unit root is at most
one. This rules out integration of an order higher than one. For example, yt is
I(2) when the multiplicity of the unit root is two. The requirement that θ(1) �= 0
ensures that θ(L)εt is I(0). Without this condition we would not have the previous
relation between the roots of ϕ(z) and the order of integration.

A key parameter for our analysis is the persistence parameter that is defined by

π = max
i=1,...,p

1

|z∗
i |

,

where z∗
1, . . . , z∗

p are the roots of the characteristic polynomial, i.e., ϕ(z∗
i ) = 0,

i = 1, . . . , p. We note that π = 1 when ϕ(z) has a unit root, and for per-
sistent processes, the implicit function theorem (applied to f (ϕ1, . . . ,ϕp, z) =
1−ϕ1z −·· ·−ϕpz p = 0 about z = 1) shows that π is roughly equal to

ϕ• = ϕ1 +·· ·+ϕp.

The persistence parameter can also be defined from the companion form for yt .
Without loss of generality, consider the case with δ = 0 and θ(z) = 1. Then
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Yt = (yt , . . . , yt−p+1)
′, can be expressed as a VAR(1) process, Yt = 
Yt−1 + ε∗

t ,
where ε∗

t = (εt ,0, . . . ,0)′, and


 =

⎛
⎜⎜⎜⎜⎜⎝

ϕ1 ϕ2 · · · ϕp−1 ϕp

1 0 · · · 0
0 1 · · ·
...

. . .

0 1 0

⎞
⎟⎟⎟⎟⎟⎠ .

The persistence parameter, π , is simply given as the spectral radius of 
 (the
largest eigenvalue as measured in absolute value).

Much of our analysis can be understood from the simplest case, where p = 1
and q = 0. This case is outlined in the following example.

Example 1
Suppose that Assumption 1 holds with p = 1 and q = 0. Then yt is an AR(1)
process, and by manipulating the two expressions,

yt = πyt−1 + (1−π)δ + εt and xt = yt + ξ +ηt ,

we have that xt = πxt−1 + (1−π)(δ + ξ)+ εt +ηt −πηt−1.

Note that we have parameterized the constant in such a way that it vanishes
whenever π = 1. This ensures that yt does not have a deterministic trend in the
unit root case.

2.1. Instrumental Variable Estimators

We consider the class instrumental variable estimators of the persistence para-
meter π , which we defined in (3). These estimators have the form

π̂IVz = ∑n
t=1 zt xt+1

∑n
t=1 zt xt

, (4)

where we refer to zt as an instrumental variable or simply an instrument. The ex-
pression (4) defines a large class of estimators that includes the least squares esti-
mator and instrumental variable estimators including the two-stage least squares
estimator. For example, when the instrumental variable is a lagged value of the
observed time series (less its sample average), we have

π̂IV j = ∑n
t=1(xt− j − x̄ j )xt+1

∑n
t=1(xt− j − x̄ j )xt

, j = 0,1,2, . . . ,

where x̄ j = n−1 ∑n
t=1 xt− j . When j = 0 this estimator simplifies to the least

squares estimator

π̂LS = ∑n
t=1(xt − x̄0)xt+1

∑n
t=1(xt − x̄0)xt

.
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The two-stage least squares (TSLS) estimator, which is based on multiple in-
struments, Z̃t = (xt−J1 − x̄ J1 , . . . , xt−J2 − x̄ J2)

′ with 0 ≤ J1 ≤ J2, can also be
expressed in the form of (4). In this case we have

zt = Z̃ ′
t α̂TSLS, where α̂TSLS =

(
n

∑
t=1

Z̃t Z̃ ′
t

)−1 n

∑
t=1

Z̃t xt . (5)

This is not surprising, because the first step in a TSLS procedure amounts to a
dimension reduction, where a vector of instruments is mapped into a vector of
instruments that has a dimension that matches that of the regression parameters.
The present problem has a particular covariance structure that we can utilize to
determine the optimal linear combination, α∗, of the set of instrumental variables.
This will lead to an IV estimator that is more efficient than the TSLS estimator.

2.2. Properties of Estimators: The AR(1) Case

Initially we establish the properties of our estimators assuming that yt is a simple
AR(1) process. Later we consider more general ARMA specifications and evalu-
ate the extent to which the IV estimators are robust.

LEMMA 2. Suppose that Assumption 1 holds with p = 1 and q = 0, so that
π = ϕ1. When |π | < 1 and y0 is assigned the stationary distribution for yt ,
we have

var(yt ) = σ 2
y = σ 2

ε

1−π2 and cov(xt , xt−h) =
{

σ 2
y +σ 2

η for h = 0,

πhσ 2
y for h �= 0.

When |π | < 1, we have the usual errors-in-variable problem, because xt−1
and ut = ϕ(L)ηt + θ(L)εt are correlated. For instance, under the assumptions
of Lemma 2 we have ut = ηt −πηt−1 + εt , so that cov(xt−1,ut ) = −πσ 2

η . This
correlation causes the well-known attenuation bias of the least squares estima-
tor, which has previously been discussed in the context of realized measures by
Barndorff-Nielsen and Shephard (2002).

THEOREM 1 (Least squares estimator). Suppose that Assumption 1 holds with
p = 1 and q = 0. Let λ = σ 2

η /σ 2
ε .

(i) We have

π̂LS
p→ π

1

1+λ(1−π2)
.

(ii) When π = 1, we have

n(π̂LS −1)
d→
∫ 1

0 (Wu − W̄ )dWu −λ∫ 1
0 (Wu − W̄ )2du

.
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The first part of Theorem 1 shows that the least squares estimator is inconsistent
unless λ = 0 or π = 1. Although measurement errors, λ > 0, do not render the
least squares estimator inconsistent when π = 1, they do affect the asymptotic
distribution, because λ shows up in the limit distribution. Despite the consistency
of π̂LS in the unit root case, the stochastic bias,

− λ

n
∫ 1

0 (Wu − W̄ )2du
, (6)

need not be negligible in finite samples. This will be illustrated in our empirical
application, where the bias is sizable despite a large sample size.

When p = 1 such that ϕ(L) = 1 − π L , we have the decomposition of our
estimators,

π̂IVz = π + ∑n
t=1 zt ut+1

∑n
t=1 zt xt

, where ut+1 = εt+1 +ηt+1 −πηt .

This shows the key to consistency whenever |π | < 1 is an instrument that is
uncorrelated with ut+1. For example, when yt ∼ARMA(1,1) as in Meddahi
(2002, 2003), the instrument zt = xt− j − x̄ j is valid for any j ≥ 1, because
cov(xt− j ,ut+1) = 0 for j ≥ 1.

THEOREM 2 (Instrumental variable estimator). Suppose that Assumption 1
holds with p = 1 and q = 0.

(i) When |π | < 1, we have, for j > 0,

n1/2(π̂IV j −π)
d→ N

[
0,π−2 j(1−π2){1+2

(
1−π2)λ+ (1−π4)λ2

}]
,

where λ = σ 2
η /σ 2

ε .
(ii) (Hall, 1989) When π = 1, we have, for j > 0,

n(π̂IV j −π)
d→
∫ 1

0 (Wu − W̄ )dWu∫ 1
0 (Wu − W̄ )2du

.

For the case where yt ∼AR(1), Theorem 2 shows that the instrumental variable
estimator is consistent for π , when j ≥ 1. The first part of the theorem shows
that xt−1 is the most efficient instrumental variable, among xt−1, xt−2, . . . , when
|π | < 1, because π̂IV1 has the smallest asymptotic variance. This is intuitive be-
cause the autocovariance function is for j ≥ 1 given by corr(xt , xt− j ) = π j , so that
xt−1 is more correlated with xt than is xt− j , for j ≥ 2. The asymptotic distribution
for the case where π = 1 is due to Hall (1989), who emphasized the benefits of us-
ing π̂IV j to test for unit roots rather than π̂LS, because the former has an asymptotic
distribution that is free of the nuisance parameter, λ = σ 2

η /σ 2
ε . cf. Theorem 1(i i)

and Theorem 2(i i).
Having an asymptotic distribution that depends on nuisance parameters is ob-

viously inconvenient, but the conventional unit root test has another flaw that is
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more problematic in our empirical application. The standard OLS-based unit root
test is known to be highly size distorted in the presence of a large moving aver-
age root, see Schwert (1989) and Perron and Ng (1996), and this size distortion
is largely due to the stochastic bias that we defined in (6). Despite the fact that
the stochastic bias is only of order Op(n−1), which suggests it vanishes quickly
as n → ∞, it can play a major role even if n is large. The reason is that λ can be
large, so that the bias is not negligible even with a fairly large sample size. This is
indeed the case in our application with realized measures of volatility, where n is
close to 2,000. For the time series of realized variances, we find the least squares
estimator to be about 30% smaller than the IV estimator, and for the more accu-
rate estimator of volatility, the realized kernel, we find the downward bias to be
about 15%.

The instruments in Theorem 2 are single variable instruments, in the sense that
they are based on a single lag of xt . When |π | < 1, we can construct a more effi-
cient IV by taking a linear combination of multiple instruments, (xt−1, xt−2, . . .).

THEOREM 3 (Optimal instrument). Suppose that Assumption 1 holds with
p = 1 and q = 0, and consider the case where |π | < 1. Let Zt = (xt−1 −
x̄1, . . . xt−J − x̄ J )′, where J ≥ 1 is the dimension of Zt . Then

avar

(
n−1/2

n

∑
t=1

Zt ut+1

)
= σ 4

ε Mπ,λ and plim
n→∞

(
n−1

n

∑
t=1

Zt xt

)
= σ 2

y Vπ ,

where Vπ = (π,π2, . . . ,π J
)′

, and

Mπ,λ = 1
1−π2 B1 +2λI +λ2 B2,

where I is the J × J identity matrix, and B1 and B2 are symmetric band matrices
given by

B1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 π π2 · · · π J−1

π 1 π
. . .

...

π2 π 1
. . . π2

...
. . .

. . .
. . . π

π J−1 · · · π2 π 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

B2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1+π2 −π 0 · · · 0

−π 1+π2 −π
. . .

...

0 −π
. . .

. . . 0
...

. . .
. . .

. . . −π

0 · · · 0 −π 1+π2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.
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Within the class of instrumental variables, {zt : zt = Z ′
tα for some α ∈ RJ }, the

smallest asymptotic variance is achieved with

z∗
t = Z ′

tα
∗
π,λ, where α∗

π,λ = M−1
π,λVπ ,

and the asymptotic variance of this optimal IV estimator, π̂∗ = π̂IVz∗ , is

avar
{

n−1/2(π̂∗ −π)
}

= (1−π2)2

V ′
π M−1

π,λVπ

= 1−π2

V ′
π

{
B1 +2λ(1−π2)I +λ2(1−π2)B2

}−1
Vπ

.

Naturally, the optimal linear combination is scale invariant, in the sense that
cz∗

t is also an optimal instrument for any c �= 0. The estimator obviously has a
generalized method of moments (GMM) interpretation, since it is deduced from
moment conditions. In relation to GMM, a contribution of the theorem is the
closed-form expression for the optimal weighting matrix.

2.2.1. Implementation of Multiple-Variable IV. The optimal linear combina-
tion depends on unknown parameters, so in our empirical application we will use
a two-step estimation procedure, which may be iterated if needed. In the first step
we obtain preliminary estimates of π and λ. For example, one can estimate π by
a the TSLS estimator and then estimate λ, by

λ̂π̂ = − ρ̂�x,1 + 1−π̂
2(

1+ π̂
)
ρ̂�x,1 + 1+π̂

2

, (7)

where

ρ�x,1 = cov(�xt ,�xt−1)

var(�xt )
.

In the second step the instrument zt = Z ′
tαπ̂,λ̂ is computed and used to obtain

new estimates of π and λ.1 If necessary, the second step can be iterated until the
estimates have converged. In our empirical application the estimates converged
in just two iterations. In GMM terminology, the resulting estimate is the continu-
ously updated GMM (CUGMM) estimator.

Note that the estimator in (7) simplifies to

λ̂LL = − ρ̂�x,1

2ρ̂�x,1 +1

when π̂ = 1, which is the estimator of λ = σ 2
η /σ 2

ε , in the local level model

yt = yt−1 + εt and xt = yt +ηt ,
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which is motivated by the fact that ρ�x,1 = − λ
2λ+1 in this model; see, e.g., Harvey

(1993). When |π | < 1, p = 1 and q = 0, the estimator in (7) can be motivated by
the identity

ρ�x,1 = cov(�xt ,�xt−1)

var(�xt )
= −

σ 2
ε

(
λ+ 1−π

1+π

)
2σ 2

ε (λ+ 1
1+π )

= −1

2

(1+π)λ+ (1−π)

(1+π)λ+1
= 1

2

{
π

(1+π)λ+1
−1

}
.

In our application we found this multiple-variable IV estimator to be insensitive
to the estimate of λ, and the point estimates of π were always very similar to the
TSLS estimates that do not require an estimate of λ.

2.2.2. A Comment on the Inefficiency of TSLS. In the stationary case |π | < 1,
this optimal IV estimator, π̂∗, will be similar to the TSLS estimator when λ is
small. This follows from the fact that

n−1
n

∑
t=1

Zt Z ′
t

p→ σ 2
ε

(
1

1−π2 B1 +λI
)

= σ 2
ε

(
Mπ,λ −λI −λ2 B2

)
,

when |π | < 1. The linear combination of instruments that is implied by the TSLS

estimator converges in probability to αTSLS = c
(

Mπ,λ −λI −λ2 B2
)−1

Vπ , as

n → ∞, for some constant c �= 0. This will be similar to α∗ = M−1
π,λVπ when

λ is small. Still, the asymptotic variance of the TSLS estimator exceeds that of
the optimal instrument when λ > 0 in the stationary case |π | < 1.

It is interesting (and perhaps surprising) that the TSLS is inefficient in the
present context. In a textbook setting, the TSLS estimator is asymptotically ef-
ficient when Zt is a vector of valid instruments that meets certain rank conditions,
and we have E(u2

t+1 Zt Z ′
t ) = E(u2

t+1)E(Zt Z ′
t ). These conditions are all satisfied

here. So how can it be that z∗
t is a better linear combination of Zt than that implied

by the TSLS estimator? The TSLS is asymptotically efficient if E(Zt Z ′
t ) is pro-

portional to the asymptotic variance of n−1/2 ∑n
t=1 Zt ut+1, where the latter, in a

textbook setup, equals E(u2
t+1 Zt Z ′

t ). However, this is not true in the present con-
text, because {Zt ut+1} is not a martingale difference sequence. The asymptotic
variance of n−1/2 ∑n

t=1 Zt ut+1 is σ 4
ε Mπ,λ, which does not equal E(u2

t+1 Zt Z ′
t ),

and this is the underlying reason that TSLS is inefficient in the present context.
The IV estimator computed with z∗

t is based on the solution to an eigenvalue
problem. This is a feature that is shared by the well-known limited information
maximum likelihood (LIML) estimator; see Anderson and Rubin (1949). Yet the
two estimators are different, because the optimal estimator take full advantage of
the particular covariance structure in this model.

2.2.3. Quantifying the Asymptotic Variance. In Figure 1 we have plotted the
asymptotic variance for several estimators in the situation where π = 0.975 and
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FIGURE 1. The asymptotic variance of the IV estimator based on different subset of instru-
mental variables. Crosses correspond to the single-variable instrument estimators where
zt = xt− j − x̄ j ; triangles represent the optimal combinations of (xt−1 − x̄1, . . . , xt−J −
x̄ J ), for J = 1, . . . ,10; circles and squares denote the optimal combinations of (xt−2 −
x̄2, . . . , xt−J − x̄ J ) and (xt−3 − x̄3, . . . , xt−J − x̄ J ), respectively. The results are for the
case where π = 0.975 and λ = 10. We see a substantial gain in efficiency by constructing
instruments as a combination of multiple lagged values of xt− j . Omitting the first few lags
of xt− j is fairly innocuous when J is sufficiently large.

λ = 10. This configuration is motivated by our empirical analysis that is presented
in Section 4.

All of these estimators are linear combinations of Zt = (xt−1 − x̄1, . . . ,
xt−10 − x̄10)

′, so the asymptotic variance is simply given by

avar(π̂α′ Zt ) = α′Mπ,λα

(α′Vπ )2 .

The line with the crossed symbols presents the asymptotic variance of the single-
variable instrument, π̂IV j , which has zt = xt− j − x̄ j , for j = 1, . . . ,10. In the nota-
tion given above, these estimators correspond to α-vectors that have one nonzero
element, e.g., α = (1,0, . . . ,0)′.

We also present results for the estimator that optimally combines a subset of
the 10 variables, specifically the optimal combination of the J − j + 1 instru-
ments (xt− j − x̄ j , . . . , xt−J − x̄ J ), where j = 1,2,3 and j ≤ J ≤ 10. Obviously,
the smallest asymptotic variance (in this class of estimators) is achieved by the
estimator that has j = 1 and J = 10. However, by increasing j the estimator
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becomes robust to measurement errors that are m-dependent, see, e.g., White
(2000), so long as m < j . So we are interested in the loss of efficiency by dropping
the first few lags as instruments. We are also interested in the marginal gains from
increasing J . The reason is that theory suggests that J be as large as possible, but
the practical implication of increasing J has drawbacks. It is therefore useful to
know that the efficiency gain from increasing J beyond 10, say, is small.

Figure 1 shows that there are substantial gains from combining multiple in-
struments, but that the loss of efficiency by dropping the first few instruments is
modest in this configuration once J is chosen large enough. Increasing J beyond
10 only leads to very minor gains in efficiency. So our preferred IV estimation in
our empirical analysis will be the one that combines lags four through 10.

2.3. Properties of Estimators: The ARMA(p,q) Case

Consider now the case where yt is an ARMA(p,q) and where we allow for a more
general specification for the measurement errors.

THEOREM 4. Suppose that Assumption 1 holds. (i) When π < 1 and j ≥
max(p,q), we have

π̂IV j

p→ γ ( j +1)

γ ( j)
, as n → ∞,

where γ (h) = cov(yt , yt+h), h = 0,1, . . .. (i i) When π = 1 we have π̂IV j

p→ 1, as
n → ∞, for all j ≥ 0, and for j ≥ max(p,q), we have

n(π̂IV j −π)
d→
∫ 1

0 (Wu − W̄ )dWu∫ 1
0 (Wu − W̄ )2du

.

Previously, we established the consistency of π̂IV j for π when p = 1,
yt ∼AR(1), and the consistency holds in general in the unit root case π = 1.
When p ≥ 2 but π < 1, we see that the IV estimator, π̂IV j , is consistent for
γ ( j + 1)/γ ( j). So the question is whether this ratio is related to the persistence
parameter π . This is addressed next, where we recall that a matrix is said to be
positive if all its entries are positive.

LEMMA 3. Suppose that 
m is positive for some integer m and π < 1. Then
γ ( j+1)
γ ( j) → π as j → ∞.

The lemma is a consequence of the Perron-Frobenius theorem, and the result

shows, in conjunction with Theorem 4, that π̂IV j

d→ π as n, j → ∞. The conver-

gence γ ( j+1)
γ ( j) → π occurs at a fast exponential rate that is defined by the second

largest eigenvalue of 
, which suggests that j does not have to be very large in
practice. The assumption that 
m is positive for some m is stronger than neces-
sary, yet it is a reasonable assumption for the type of time series we consider in
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this paper. The assumption rules out cases where the largest eigenvalue is nega-
tive, which could induce cyclical behavior in the autocorrelation function.

2.4. Multivariate Extension

In some cases it may be desirable to estimate all of the autoregressive para-
meters, (ϕ1, . . . ,ϕp), simultaneously. This is possible with multivariate IV esti-

mators, ϕ̂IVZ = (∑n
t=1 Zt X ′

t

)−1 ∑n
t=1 Zt xt+1, where Xt = (xt , xt−1, . . . , xt−p+1)

′
and Zt = (xt− j − x̄ j , . . . , xt− j−p+1 − x̄ j−p+1)

′. This estimator is known as the
Yule-Walker estimator, as it simply relies on the Yule-Walker equations. It is sim-

ple to verify that ϕ̂IVZ

p→ (ϕ1, . . . ,ϕp)
′ for j ≥ max(p,q) when Assumption 1

holds. Naturally, it is also possible to use a TSLS estimator that utilizes more than
p instrumental variables.

It is, however, our experience that the multivariate IV estimators are very sen-
sitive to measurement errors. When measurement errors are of the magnitude we
have in our empirical application with realized volatility measures, it appears that
an extremely large sample size is needed in order to get reliable estimates of all
autoregressive parameters when p ≥ 2. Since we are mainly concerned with the
persistence parameter and the autocorrelation function, we do not pursue these
multivariate estimators further.

3. AN APPROXIMATE AUTOCORRELATION FUNCTION
OF A LATENT TIME SERIES

In this section we introduce an approximate estimator of the autocorrelation func-
tion that is based on a variant of the IV estimator we studied in the previous
section. It is well known that measurement errors cause the population ACF of
the observed process to look different from that of the underlying time series.
With simple measurement errors, the autocorrelations of the observed process are
simple those of the underlying process, scaled by a constant. In the context of
realized measures, this has been noted in Taylor (2005, p. 337).

Before we define the new approximate autocovariance function for the latent
y-process, we define the traditional empirical autocovariances for the latent pro-
cess, y, and the observed process, x .

If yt is observed, then we can estimate the autocorrelations by the empirical
autocorrelations that are defined by

ACFy(h) = ∑n
t=1 yt+h(yt − ȳ0)

∑n
t=1 yt (yt − ȳ0)

, h = 0,1, . . . .

The probability limit ρy(h) = plimn→∞ ACFy(h) is well defined whether π = 1 or
|π | < 1. Naturally, ACFy(h) is simply the least squares estimator in the regression

yt+h = ρy(h)yt +μy +ut,h,

https://doi.org/10.1017/S0266466613000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466613000121


74 PETER R. HANSEN AND ASGER LUNDE

where μy is a constant. The corresponding regression equation for the observed
time series is

xt+h = ρx (h)xt +μx + vt,h,

where the errors-in-variables problem will cause the least squares estimator of
ρx (h), defined by

ACFx (h) = ∑n
t=1 xt+h(xt − x̄0)

∑n
t=1 xt (xt − x̄0)

, h = 0,1, . . . ,

to be inconsistent for ρy(h). In the presence of measurement errors, it is therefore
tempting to estimate ρy(h) using an IV estimator, analogous to the way we have
estimated the persistence parameter π . Consider

ACF∗
x (h) = ∑n

t=1 zt xt+h

∑n
t=1 zt xt

,

where the instrument zt could be a lagged value of xt− j − x̄ j or a linear combi-
nation of such zt = Z ′

tα with Zt = (xt− j − x̄ j , . . . , xt−J − x̄ J )′. The latter corre-
sponds to a TSLS estimator, where α is determined in the first stage by regressing
xt onto Zt . In our empirical application, we use j = 4 and J = 10.

We refer to ACF∗
x (h), h = 1,2, . . . , as the approximate autocorrelation func-

tion, where the nomenclature “ approximate” is due to the fact that ACF∗
x (h) need

not be consistent for ρy(h) in general. The potential inconsistency can be under-
stood from the following simple example. Suppose that yt is an AR(2) process

with |π | < 1 and zt = xt− j − x̄ j . Then ACF∗
x (h)

p→ γ (h + j)/γ ( j), which need
not equal ρ(h) = γ (h)/γ (0). The ratio of the two equals γ (h + j)/γ (h) divided
by ρ( j), which will be close to one for many persistent processes. For instance,
if yt is an AR(1) process with π �= 0, then γ (h + j)/γ ( j) = γ (h)/γ (0) = πh ,
making ACF∗

x (h) consistent for ρy(h) in this special case. More generally, we
have that zt = Z ′

tα with Zt = (xt− j − x̄ j , . . . , xt−J − x̄ J )′ and j ≥ max(p,q)
that ACF∗

x (h) converges to ∑J
j αiγ (i + h)/∑J

j αiγ (i) in probability. A drawback
of the approximate ACF is the fact that its probability limit depends on the
choice of instruments. Fortunately, the approximation error will be small when
γ (h + i)/(γ (h)ρ(i)) is close to unity, which is the case for persistent processes.

We illustrate the merits of the approximate ACF by considering two persistent
AR(2) processes, measured with error. Specifically, we consider the process

yt = ϕ•( 3
4 yt−1 + 1

4 yt−2)+ εt ,

where εt ∼ iid N (0,1) and where ϕ• is either ϕ• = 1 (unit root), ϕ• = 1− c
n with

c = 20 (local to unit root), or ϕ• = 0.975 (stationary). In the local-to-unit design,
this translates into π = 0.936, π = 0.984, and π = 0.998, for n = 250, n = 1,000,
and n = 10,000, respectively, and in the stationary design ϕ• = 0.975 translates
into π = 0.980.
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We consider the ACFs for both yt and xt = yt + ηt , where ηt ∼ iid N (0,σ 2
η )

with σ 2
η = 4. The corresponding results for σ 2

η = 1 and σ 2
η = 10 are in the Sup-

plementary Appendix, which is available upon request. The simulation results
reported here are based on 1,000 simulations, where the initial values were set to
y0 = y−1 = 0.

The solid thin black lines in Figure 2 represent the population ACF for
the underlying process. Naturally, for the unit root process in the left panels,
the population autocorrelation is constant and equal to one. The solid thick gray
lines represent the empirical ACF, ACFx , which is computed with the observed
time series, xt , and the short-dashed lines represent the new approximate ACF,
ACF∗

x . For comparison we also include the empirical ACF, ACFy , which is com-
puted with underlying y-process (long-dashed lines). The difference between the
empirical ACFy and the population ACF reflects the well-known bias that van-
ishes as n → ∞. The empirical autocorrelations reported are the averages over
1,000 simulations.

For the unit root case in the left-hand panels, it is interesting to note that the
(infeasible) empirical ACFy , which is computed with the (in practice unobserved)

FIGURE 2. The solid thin black lines represent the population autocorrelation function for
the underlying autoregressive y-process (the object of interest). The solid thick gray lines
are the empirical autocorrelation functions for the observed x-process, ACFx . The short-
dashed line is the approximate autocorrelation function, ACF∗

x , also computed with the
observed x-process. For comparison we include ACFy , which is the (infeasible) empirical
acf for the y-process (long-dashed lines).
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yt process, is more biased than the approximate ACF. This result is even true with
much higher levels of measurement errors (see the Supplementary Appendix for
the corresponding results with σ 2

η = 10). For the local-to-unit root process we see
that ACF∗

x is nearly as good as the infeasible ACFy , in particular for large sample
sizes, and it clearly dominates the traditional ACFx .

4. EMPIRICAL ANALYSIS OF REALIZED MEASURES, INFLATION,
AND ABSOLUTE RETURNS

We present empirical results using three data sets. The first data set consists of
realized measures of volatility for stocks in the DJIA (as of medio 2008). We
consider both the realized variance and the realized kernel. The second data set
consists of two macroeconomic variables measuring U.S. inflation. The third data
set consists of two long time series of absolute returns.

We present two types of results. For the realized measures of volatility, we
estimates the persistence parameter, π , and compute the unit root tests based on
both OLS and IV estimates. We compute the approximate ACFs for all time series
in the three data sets and compare them to the empirical ACF for the observed time
series.

High-frequency-based estimators of volatility are far more precise of volatil-
ity than squared returns, which is valuable for a number of reasons. For the pur-
pose of evaluating volatility models, Andersen and Bollerslev (1998) documented
that the realized variance strongly dominates squared returns when generalized
autoregressive conditional heteroskedasticity (GARCH) models are evaluated
with Minzer-Zarnowitch regressions; see also Hansen and Lunde (2005a). On
a related issue, Hansen and Lunde (2006) have shown that a precise proxy of
the latent volatility is critical for the empirical ranking of volatility models to be
consistent for the population ranking unless the loss function has certain proper-
ties. See also Patton (2011) and Patton and Sheppard (2009), who provide further
insight about this issue.

A drawback of the realized variance (RV) is that it is sensitive to market
microstructure noise, and it is therefore not sensible to compute the RV with
ultra-high-frequency returns such as tick-by-tick returns. There are several robust
estimators that can utilize the entire database, including those by Zhang, Mykland,
and Aı̈t-Sahalia (2005), Barndorff-Nielsen et al. (2008, 2009), and Hansen and
Horel (2009). However, even these estimators are in practice found to have a siz-
able sampling error, as is evident from the confidence intervals that are reported
for these estimators; see, e.g., Barndorff-Nielsen et al. (2008) and Hansen and
Horel. Any of these point estimates should therefore not be taken to be the true
volatility. The sampling error must be accounted for when the objective is to learn
about the dynamics of actual volatilities. Naturally, the measurement error can
have other sources besides sampling error, such as those induced by market mi-
crostructure noise that has not been accounted for properly. The measurement
error will be different for different realized measures, but the conclusions that one
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draws about yt from each of them should not contradict one another because they
are all proxies for the same latent variable.

The importance of accounting for the measurement errors in the observed re-
alized variances have been stressed by Andersen, Bollerslev, Diebold, and Labys
(2003) and Andersen, Bollerslev, and Meddahi (2005). They emphasize the down-
ward bias in the R2 that measurement errors induce in predictive regressions. See
also Meddahi (2001), Meddahi (2002), Andersen et al. (2004), and Andersen,
Bollerslev, and Meddahi (2011).

4.1. Data Description

4.1.1. Realized Measures of Volatility. We analyze daily volatility estimates
primarily based on high-frequency asset prices for 29 assets in the DJIA. The
sample period runs from January 3, 2002, to July 31, 2009, with a total of 1,907
trading days for most of the series. The high-frequency data used to compute the
realized measures of volatility are the trades and quotes recorded on the NYSE.
These high-frequency data were extracted from the TAQ database through the
Wharton Research Data Services (WRDS) system. Both the realized kernel and
the realized variance are computed with transaction prices. However, quote prices
are being used to clean the transaction data for anomalies. We follow the step-by-
step cleaning procedure proposed by Barndorff-Nielsen et al. (2009).

We did not include realized measures that were computed with high-frequency
data that spanned less than six hours. For each of the assets there were about 18
such days, primarily days where the market closed at noon, such as the day after
Thanksgiving. These data were removed in order to eliminate obvious outliers that
would arise from realized measures that correspond to just half a day of volatility.
However, removing these data points barely affected any of our estimates.

4.1.2. Other Data: Macroeconomic Time Series and Absolute Return Series.
We present the approximate autocorrelation functions for two time series of in-
flation and two time series of absolute returns. The two time series of infla-
tion are derived from the Consumer Price Index for All Urban Consumers: All
Items (CPIAUCSL). It is a monthly time series drawn from the data available
online in Federal Reserve Economic Data (FRED) at the Federal Reserve Bank
of St. Louis. The sample period we consider is 1947:M1 to 2010:M11; shorter
samples periods (1959:M1 to 1997:M9) have previously been analyzed in Stock
and Watson (1999) and Hansen, Lunde, and Nason (2011). The two time series of
absolute returns are based on daily returns on the DJIA and the Standard & Poor’s
(S&P) 500 downloaded from Yahoo Finance. These span the period October
1, 1928, to September 16, 2009, and January 3, 1950, to September 16, 2009,
respectively.

4.2. The Persistence of the Underlying Volatility

In this section we estimate the persistence parameter, π , using the IV estimators
that were introduced in Section 2. The persistence parameter has been estimated in
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earlier work. For instance, Maheu and McCurdy (2002) estimated an ARMA(1,1)
model with a daily time series of the realized variance for an exchange rate,
and they reported π = 0.9. Meddahi (2003) deduced the value, π = 0.95, from
Bollerslev and Zhou (2002), who estimated stochastic volatility diffusions us-
ing empirical moments of the integrated variance. Interestingly, Bollerslev and
Zhou did mention the potential use of IVS in the context of additive measurement
errors, but they did not pursue this estimation strategy. In an application with
time-varying betas that were computed from daily returns, Ghysels and Jacquier
(2006) used the first lag as an IV to estimate an augmented AR(1) model for the
noisy time series of betas.

We use yt = logIVt and xt = logRMt , where IVt = ∫ t
t−1 σ 2

s ds is the inte-
grated variance and RMt is a corresponding realized measure for day t . We prefer
the logarithmic transformed variables for two reasons. First, it gets around the
problem that the ARMA model does not prevent volatility from being negative.
Second, in the Barndorff-Nielsen and Shephard framework the asymptotic vari-
ance of RVt − IVt is proportional to IQt = ∫ t

t−1 σ 4
s ds, whereas the asymptotic

variance of logRVt − logIVt is proportional to IQt
/

IV2
t . The latter varies less

with t , so the log-transformation leads to less heteroskedasticity.
In Tables 1–2 we present least squares and IV estimates of the persistence

parameter. The estimates in Table 1 are those for the time series with realized
kernel estimates. For each of the 29 assets, we compute the least squares es-
timator and eight IV estimators. The first four IV estimates are single-variable
instruments based on the instrument zt = xt− j − x̄ j , where j = 1, . . . ,4. The
last four IV estimates are based on multiple lags of the observed process,
xt− j − x̄ j , . . . , xt−10 − x̄10, j = 1, . . . ,4, and these are computed with the pro-
cedure described in Section 2.2.1.

The least squares estimates in the first column are 10–20% smaller than the IV
estimators in most cases. This shows that stochastic bias is important despite the
large sample size. Thus, interpreting the asymptotic result that the stochastic bias
is of order Op(n−1) to mean that this bias is negligible is very misleading in this
context. We see that the persistence parameter tends to be large when the first few
lags of xt− j are not used as instruments. This indicates some serial dependence
in the measurements errors that a larger value of j offers robustness to. So j = 1
(and j = 2 in some cases) appears to be too small to properly account for the
noise. The multiple IV estimators with j = 3 and j = 4 are very similar and close
to one in all cases, which shows that the underlying time series is highly persistent
and close to unit root.

In Table 2 we present empirical results that are analogous to those in Table 1.
The only difference is that these are based on the realized variance computed with
30-minute returns instead of the realized kernel. The realized variance is expected
to be a less accurate estimator of the quadratic variation than the realized kernel,
which translates into a larger measurement error variance. This is indeed found
to be the case, because the bias of the least squares estimator is about twice as
large as that we observed with the realized kernel. The IV estimates based on the

https://doi.org/10.1017/S0266466613000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466613000121


TIME SERIES PERSISTENCE AND AUTOCORRELATION 79

TABLE 1. Autoregressive persistence parameter, π . x = log(RKt )

Single-variable IV Multiple-variables IV

OLS IV1 IV2 IV3 IV4 IV1:10 IV2:10 IV3:10 IV4:10

AA 0.854 0.966 0.976 0.986 0.981 0.977 0.983 0.985 0.986
AXP 0.926 0.988 0.986 0.987 0.991 0.989 0.990 0.991 0.993
BA 0.832 0.960 0.972 0.987 0.994 0.976 0.984 0.988 0.989
BAC 0.942 0.978 0.985 0.992 0.994 0.984 0.989 0.992 0.993
C 0.938 0.978 0.985 0.991 0.987 0.983 0.988 0.990 0.989
CAT 0.845 0.949 0.975 0.987 0.994 0.971 0.983 0.987 0.987
CVX 0.850 0.953 0.967 0.984 0.989 0.968 0.977 0.981 0.980
DD 0.847 0.959 0.973 0.988 0.986 0.975 0.982 0.985 0.984
DIS 0.864 0.959 0.976 0.990 0.991 0.975 0.984 0.988 0.987
GE 0.902 0.975 0.984 0.992 0.991 0.984 0.989 0.991 0.991
GM 0.865 0.952 0.984 0.986 0.984 0.974 0.988 0.991 0.996
HD 0.850 0.964 0.968 0.992 0.989 0.977 0.983 0.988 0.986
HPQ 0.819 0.943 0.967 0.979 0.985 0.965 0.978 0.983 0.984
IBM 0.857 0.968 0.970 0.992 0.993 0.978 0.983 0.986 0.984
INTC 0.858 0.945 0.962 0.998 0.993 0.964 0.980 0.990 0.984
JNJ 0.827 0.944 0.982 0.986 0.982 0.970 0.984 0.986 0.987
JPM 0.927 0.972 0.982 0.993 0.989 0.981 0.987 0.991 0.990
KO 0.836 0.965 0.967 0.984 0.991 0.976 0.981 0.985 0.985
MCD 0.751 0.933 0.955 0.988 0.976 0.963 0.977 0.986 0.986
MMM 0.809 0.946 0.946 0.994 0.967 0.962 0.972 0.982 0.978
MRK 0.751 0.899 0.980 0.972 0.980 0.946 0.977 0.976 0.979
MSFT 0.866 0.965 0.977 0.990 0.981 0.978 0.984 0.986 0.985
PFE 0.793 0.935 0.942 0.991 1.002 0.959 0.975 0.991 0.989
PG 0.800 0.928 0.964 0.973 0.992 0.955 0.973 0.979 0.981
T 0.832 0.940 0.958 0.978 0.984 0.959 0.973 0.983 0.986
UTX 0.825 0.955 0.967 0.972 0.988 0.969 0.976 0.980 0.983
VZ 0.848 0.962 0.971 0.982 0.989 0.975 0.982 0.987 0.989
WMT 0.813 0.952 0.961 0.991 0.980 0.970 0.979 0.986 0.985
XOM 0.850 0.954 0.967 0.987 0.985 0.969 0.977 0.982 0.978

Point estimates of the persistence parameter π . The first column contains the least squares estimator. The next four
columns are IV estimates based on single-variable instruments: xt−2 − x̄2, . . . , xt−5 − x̄5, respectively. The next four
columns are estimates using multiple-instrumental variables, xt−i − x̄i , . . . , xt−10 − x̄10, for i = 2, . . . ,5.

realized variance are strikingly similar to those we obtained with the realized ker-
nel. This is further evidence that the latent volatility is highly persistent and close
to being a unit root process. The average difference between the estimates based
on the realized kernel and those based on the realized variance are reported in the
last row of Table 2, where the average is taken over all assets. We observed that
the OLS estimator based on the realized variance is, on average, 0.127 smaller
than that based on the realized kernel. In contrast, the IV estimates are in agree-
ment in all cases. These observations reflect that the IV estimators are estimating
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TABLE 2. Autoregressive persistence parameter, π . x = log(RVt )

Single-variable IV Multiple-variables IV

OLS IV1 IV2 IV3 IV4 IV1:10 IV2:10 IV3:10 IV4:10

AA 0.722 0.953 0.974 0.991 0.982 0.978 0.984 0.986 0.987
AXP 0.853 0.982 0.990 0.989 0.984 0.990 0.991 0.992 0.993
BA 0.659 0.967 0.969 0.965 0.985 0.980 0.984 0.989 0.994
BAC 0.887 0.964 0.985 0.990 0.993 0.980 0.990 0.992 0.993
C 0.881 0.975 0.991 0.990 0.985 0.986 0.990 0.990 0.990
CAT 0.701 0.976 0.948 0.999 0.983 0.981 0.983 0.987 0.985
CVX 0.698 0.948 0.971 0.965 0.976 0.970 0.975 0.978 0.982
DD 0.716 0.941 0.998 0.989 0.965 0.978 0.987 0.984 0.985
DIS 0.746 0.953 0.980 0.983 1.002 0.980 0.988 0.990 0.991
GE 0.820 0.973 0.979 0.986 0.992 0.985 0.988 0.991 0.993
GM 0.758 0.945 0.966 0.974 0.983 0.973 0.985 0.993 1.001
HD 0.706 0.976 0.952 0.999 0.976 0.981 0.984 0.988 0.987
HPQ 0.670 0.927 0.952 0.967 0.971 0.960 0.972 0.979 0.983
IBM 0.708 0.973 0.968 0.999 0.982 0.982 0.984 0.985 0.984
INTC 0.725 0.935 0.971 0.994 0.977 0.970 0.982 0.984 0.983
JNJ 0.715 0.936 0.978 0.977 0.965 0.969 0.980 0.982 0.985
JPM 0.842 0.969 0.979 0.991 0.989 0.983 0.988 0.991 0.991
KO 0.708 0.967 0.959 0.989 0.990 0.980 0.984 0.988 0.989
MCD 0.626 0.896 0.966 0.985 0.969 0.956 0.979 0.984 0.986
MMM 0.639 0.931 0.948 1.027 0.930 0.968 0.979 0.984 0.977
MRK 0.611 0.895 0.991 0.955 0.975 0.957 0.976 0.973 0.980
MSFT 0.750 0.955 0.986 0.977 0.976 0.978 0.983 0.984 0.986
PFE 0.651 0.910 0.916 1.004 1.037 0.958 0.981 0.999 0.993
PG 0.639 0.916 0.939 0.997 0.999 0.960 0.976 0.984 0.980
T 0.709 0.941 0.948 0.969 0.998 0.967 0.978 0.987 0.991
UTX 0.685 0.962 0.957 0.986 0.982 0.976 0.980 0.984 0.984
VZ 0.719 0.960 0.973 0.974 0.990 0.978 0.983 0.986 0.989
WMT 0.650 0.941 0.975 0.977 0.986 0.974 0.982 0.984 0.986
XOM 0.709 0.963 0.953 0.973 0.985 0.972 0.975 0.980 0.981

Average difference between π-estimates based on RK and RV
Ave. 0.127 0.005 0.003 0.002 0.004 −0.003 −0.001 −0.000 −0.001

Point estimates of the persistence parameter π . The first column contains the least squares estimator. The next four
columns are IV estimates based on a single-variable instruments: xt−2 − x̄2, . . . , xt−5 − x̄5, respectively. The next
four columns are estimates using multiple instrumental variables, xt−i − x̄i , . . . , xt−10 − x̄10, for i = 2, . . . ,5. The
last row displays the average difference (across assets) between the estimates obtained with the realized kernel and
the realized variance.

the persistence of the same underlying time series, whereas the least squares
estimators are affected by the variance of the measurement errors that is larger
for the realized variance than the realized kernel.

The unit root test statistics, n(π̂ − 1), that arise from our estimates of π us-
ing the realized kernel estimates are reported in Table 3. The first column is the
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TABLE 3. Unit root test statistics: n(π̂ −1). x = log(RKt )

Single-variable IV Multiple-variables IV

OLS IV1 IV2 IV3 IV4 IV1:10 IV2:10 IV3:10 IV4:10

AA −276 −65.0 −46.0 −25.6 −35.8 −42.5 −32.2 −27.5 −26.5
AXP −140 −23.5 −26.9 −25.2 −16.3 −21.2 −19.3 −16.3 −13.3
BA −317 −75.2 −52.4 −25.1 −12.0 −44.2 −30.1 −22.3 −21.6
BAC −110 −42.3 −27.9 −16.0 −11.5 −30.1 −20.2 −14.6 −13.9
C −117 −42.4 −28.5 −16.1 −24.5 −31.1 −22.6 −18.9 −20.0
CAT −293 −95.6 −46.4 −24.6 −11.6 −54.8 −31.3 −24.2 −25.1
CVX −283 −89.1 −61.6 −30.7 −21.5 −60.6 −43.4 −34.9 −38.1
DD −289 −76.8 −50.9 −23.0 −27.0 −47.7 −34.1 −27.8 −29.4
DIS −257 −77.6 −46.0 −19.1 −16.1 −47.6 −30.2 −23.2 −25.2
GE −185 −47.7 −30.4 −15.1 −17.7 −29.9 −21.1 −17.4 −17.7
GM −247 −87.7 −28.6 −26.5 −29.0 −48.2 −22.2 −16.5 −7.93
HD −282 −68.1 −60.0 −14.6 −20.3 −44.1 −32.3 −23.0 −26.0
HPQ −326 −102 −58.6 −37.0 −27.5 −62.5 −39.8 −31.4 −29.6
IBM −270 −59.7 −55.8 −15.8 −13.6 −40.8 −32.4 −25.9 −30.3
INTC −268 −103 −71.4 −3.92 −13.6 −67.4 −38.2 −18.7 −29.9
JNJ −326 −106 −34.8 −26.4 −33.1 −56.3 −29.2 −26.3 −25.2
JPM −138 −52.5 −34.4 −12.6 −20.1 −36.5 −23.7 −16.8 −19.5
KO −309 −65.8 −62.5 −30.9 −17.8 −45.5 −36.1 −27.6 −27.6
MCD −469 −127 −84.6 −23.5 −44.4 −69.9 −42.3 −26.2 −25.6
MMM −361 −103 −102 −11.8 −62.1 −72.3 −53.2 −34.0 −40.6
MRK −469 −191 −37.2 −53.3 −38.0 −101 −42.4 −44.9 −40.2
MSFT −254 −66.8 −42.7 −19.2 −35.0 −42.2 −30.5 −26.1 −27.8
PFE −391 −123 −109 −16.4 2.94 −77.6 −46.3 −17.5 −20.9
PG −378 −136 −68.1 −50.9 −14.3 −83.7 −50.1 −39.1 −35.1
T −315 −113 −79.4 −41.4 −30.1 −77.0 −50.4 −31.9 −26.5
UTX −330 −85.0 −62.3 −52.0 −23.3 −58.8 −45.5 −36.8 −31.5
VZ −286 −72.4 −55.5 −33.3 −20.7 −46.5 −33.7 −24.6 −20.8
WMT −352 −90.9 −73.2 −16.2 −36.8 −56.1 −38.7 −26.2 −28.9
XOM −284 −86.6 −62.9 −23.9 −28.0 −58.9 −42.4 −34.3 −40.6

The 1% and 5% critical values are −20.7 and −14.1, respectively (see, e.g., (Fuller, 1996, Tab. 10.A.1, p. 641)). Test
statistics in bold font are those that are insignificant at the 1% level.

traditional Dickey-Fuller t-statistic. These typically range between −150 and
−400, which suggests overwhelming evidence against the unit root hypothesis.
However, as we have seen earlier, the least squares estimates of the persistence
parameter, π , are very biased, and this bias causes these test statistics to be mis-
leading. The test statistics based on the IV estimates offer a more accurate picture
of the evidence against the unit root hypotheses.

The test statistics in bold font are those for which we fail to reject the unit root
hypothesis at the 1% level. While the unit root hypothesis is rejected for most
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series, it is evident that the empirical evidence against the unit root hypothesis
is less clear-cut than suggested by the OLS-based unit root tests. The conclusion
we draw from our estimates of the persistence parameter is that the underlying
process is highly persistent. This may be attributed to the underlying process being
local to unit root, fractionally integrated, or some other form of persistent process.
Naturally, the usual suspect, “structural change,” cannot be ruled out either.

4.3. Empirical ACFs for Realized Measures

We consider two time series with estimates of daily volatility. The first time se-
ries is based on realized variance, computed with 30-minute returns, while the
other is computed with the realized kernel estimator implemented as detailed in
Barndorff-Nielsen et al. (2009). Both the realized variance and the realized kernel
are estimates of the quadratic variation. Thus, we can view both as noisy proxies
of the same population quantity, the underlying quadratic variation. We compute
the approximate autocorrelations ACF∗

x using the TSLS estimator discussed in
Section 3, where seven lags, xt−4, . . . , xt−10, are used as IVs.

Figure 3 Panel (a) displays the estimated ACFs for realized measures of volatil-
ity computed with high-frequency returns on The Boeing Company (BA). The
two approximate autocorrelation functions, ACF∗, based on the realized kernel
and the realized variance, are similar and lie above the convention ACFs.
The fact that the two ACF∗ estimates are similar is precisely what one would
expect because the realized variance and the realized kernel are both estimates
of the same underlying quantity, and the approximate ACF is designed to reflect
the persistence of the latent time series. In contrast, we see that the conventional
empirical ACFs for the realized kernel and realized variance produce distinctly
different estimates. The difference between the two ACFx s simply reflects that the
measurement errors in the two series are different. Figure 3 Panel (b) gives another
example of the estimated ACFs for another asset, Merck & Co., Inc. (MRK), and
the results are very similar; the same applies for all other assets.

In a survey of the existing literature, Taylor (2005) noted that the ACF for
the realized variance is typically estimated to be between 0.60 and 0.65 (for the
autocorrelation of order one) with a slow decay for higher-order autocorrelations,
precisely as is the case for the conventional autocorrelation estimates for the re-
alized variance in Figure 3. Taylor (Sec. 12.9.4) discusses the downward bias
that measurement errors induce on ACFx , and he speculates that the first-order
autocorrelation of the underlying volatility may be 0.70 or larger. We estimate the
first-order autocorrelation of the underlying volatility to be very close to unity in
all cases, so the downward bias is far more severe than may have been thought.

The traditional ACFs suggest that the realized kernel is somewhat more
persistent than the realized variance for both BA and MRK. A point we want
to emphasize here is that this discrepancy between the two ACFs is induced
by the realized variance being a less accurate estimator of the latent volatility,
and that neither of the conventional ACFs properly reflects the persistence of the
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FIGURE 3. The empirical and approximate autocorrelation functions computed with re-
alized measures of volatility for BA (top) and MRK (bottom). The approximate ACF∗
better reflects the autocorrelation function of latent volatility. While the conventional ACF
is quite different, the two ACF∗ estimates are in agreement.

population measure of volatility. The persistence is better assessed with our ap-
proximate estimation of the autocorrelation function, ACF∗, which produces very
similar estimates for the realized kernel and the realized variance.

Given the results we reported in Figures 2 and 3, we see that the evidence
against the unit root hypothesis is less clear-cut than suggested by the conven-
tional ACF. Since the estimated autocorrelations are downward biased when the
underlying population quantity is close to one, the estimated ACF∗s are by no
means strong evidence against the unit root hypothesis. When taking the fi-
nite sample bias and sampling error into account, the estimated ACF∗ could be
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consistent with a unit root process, a fractionally integrated process, as well as
many other types of processes.

4.4. Autocorrelation Functions for Time Series of Inflation

We consider two inflation series, the year-over-year inflation, π12
t , and the month-

over-month inflation, π1
t . These are defined by πh

t = (1200/h) ln(Pt/Pt−h),
so that both are measured at an annual rate. The inflation series are plotted in
the top panel of Figure 4, where the year-over-year series naturally emerges
as a smoothed version of the monthly series. In the bottom panel of Figure 4
we present the empirical autocorrelation function, ACFx , and the approximate

FIGURE 4. Top panel: Month-over-month inflation, π1
t , and year-over-year inflation, π12

t .
Bottom panel: The conventional and approximate autocorrelation functions for the two
inflation series. Note that the conventional autocorrelation function for the month-over-
month inflation is severely influenced by the “noisy” features of this series.
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estimator, ACF∗
x , for these two time series of inflation. As in the previous section

we use the seven lags, xt−4, . . . , xt−10, as instruments for computing ACF∗
x . We

observe that the conventional ACF is distinctly lower for the month-over-month
series, π1

t , than that of year-over-year inflation, π12
t . Also the ACFx for π1

t is
much lower than ACF∗

x . In contrast, the two ACFs for π12
t are similar, which sug-

gests that the measurement errors in this time series are relatively small. From
the top panel of Figure 4, it is evident that both inflation series are more volatile
toward the end of the sample. To ensure that our results are not driven by this fea-
ture, we have computed the ACFs using a pre-2007 sample, and the results (which
are presented in the Supplementary Appendix) are quite similar. Again, ACFx for
the π1

t series is distinctly lower than the three other autocorrelation functions,
which are virtually identical for the pre-2007 sample.

4.5. Empirical Analysis of Absolute Returns

Absolute returns are often used as an example of a process with properties that
resemble those of a fractionally integrated process; see Ding, Granger, and Engle
(1993). Squared returns are a simple one-to-one transformation of absolute re-
turns, so if absolute returns have long memory features, then so will squared
returns. In fact, the ACFs for log-absolute returns and log-squared returns are
identical. It is perhaps puzzling that the case of long memory is rarely made
about squared returns, even though the order of fractional integration, d, is the
same for absolute returns and squared returns; see, e.g., Andersen and Bollerslev
(1997), Harvey (1998), and Bollerslev and Wright (2001). We believe that the
explanation for this is that either series can be viewed as a noisy measure-
ment of volatility, and that the noise is simply more pronounced in squared
returns, which conceal the persistence to a larger extent than is the case for ab-
solute returns. The eigenfunction analysis, see Meddahi (2001) and Andersen
et al. (2011), provides the deeper theoretical explanation for this. For instance,
in the context of stochastic volatility models, this phenomenon would naturally
arise if the instantaneous volatility equals the first eigenfunction, as is the case in
Forsberg and Ghysels (2007).

In Figure 5 we have computed the empirical ACF for absolute returns as well
as the approximate ACF, and these are, as to be expected, distinctly different. The
empirical ACF is often interpreted as evidence of long memory and sometimes
considered to be evidence against a unit root hypothesis. The new estimation
of the autocorrelation of the underlying process, ACF∗

x , reveals that the choice
between long memory and unit root is less clear-cut than is suggested by the con-
ventional ACF for the observed process, ACFx .

Relying on the empirical ACF for the observed series is perhaps not the best
way to classify the long-dependence properties of a time series, because it is
influenced by the short-run dynamics. A better classification scheme of persis-
tent processes is that of Muller and Watson (2008). Their method is explicitly
designed to filter the effect of short-run dynamics and focus on the variation

https://doi.org/10.1017/S0266466613000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466613000121


86 PETER R. HANSEN AND ASGER LUNDE

FIGURE 5. ACF for daily absolute return.

at low frequencies. In their empirical analysis of absolute returns, they do find
empirical evidence that supports a fractionally integrated model for absolute
returns.

Long-memory models that explicitly account for noise in the manner we dis-
cuss in this paper are a relatively unexplored topic. A few papers, such as Chong
and Lui (1999), Sun and Phillips (2003), Hurvich, Moulines, and Soulier (2005),
and Haldrup and Nielsen (2007), consider estimation of the memory parameter in
an ARFIMA setting, where the time series of interest is perturbed by an additive
noise term. In the context of volatility measures, Bollerslev and Wright (2000)
showed that high-frequency-based volatility measures lead to more accurate es-
timates of the long-memory parameter. This is quite intuitive, because the use
of realized volatility measures effectively amounts to reducing the measurement
error.

5. SUMMARY AND CONCLUDING REMARKS

In a situation where a time series is observed with measurement errors, we have
shown that the persistence of the underlying time series can be assessed by in-
strumental variable methods. When the latent time series is an ARMA(p,q) pro-
cess, it is possible to estimate the autoregressive parameters consistently, hence
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a consistent estimate of the persistence parameter. The instrumental variables we
employ are lagged values of the observed time series, and we derived the optimal
linear IV estimator in a special case.

Serial dependence makes the lagged values of the observed time series useful
as instruments. So a highly persistent latent time series offers an ideal framework
for the IV estimators. On the other hand, a time series with little autocorrelation
causes the lagged values to be weak instruments, and the IV estimators may be
unreliable in such circumstances.

We have also proposed a novel estimator of the autocorrelation function for the
underlying time series. This estimator also relies on lagged values of the observed
process being good and valid instruments. So this estimator is best suited for the
case where the underlying time series is persistent.

We have shown that measurement errors can conceal the persistence of the un-
derlying time series, and that unit root tests are unreliable unless the measurement
errors are accounted for. So the empirical evidence against the unit root hypothe-
sis may, in some cases, not have been as clear-cut as may have been believed. Our
findings are also relevant for multivariate time series. For instance, the fact that
a unit root process with measurement errors can be confused with a fractionally
integrated process begs the following question: Can some of the fractional coin-
tegration results that have been documented in the literature be attributed to mea-
surement errors? Another possible explanation is that the underlying time series
are individually integrated of order one and cointegrate in the traditional sense,
but that measurement errors make the individual time series appear to be fraction-
ally integrated. In any case, we believe it is important to account for measurement
errors in applications with realized measures of volatility, and other persistent
time series with similar levels of measurement errors. For instance, in ARFIMA
modeling, most attention is often devoted to estimation of the order of (fractional)
integration, while the MA part is largely neglected. Yet the moving average com-
ponent deserves serious attention, because the extent of measurement errors can
influence this part of the process in important ways.

NOTE

1. In the event that the estimator of π exceeds one we suggest to substitute 1 for π̂ in the expression
(7).
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APPENDIX OF PROOFS

The proofs of Lemmas 1 and 2 are straightforward. See the Supplementary Appendix
for details.

Proof of Theorem 1. The case with |π | < 1 follows from Lemma 2. When π = 1,
we have y[un]/

√
n

w→ σεWu , where Wu is a standard Brownian motion, u ∈ [0,1], and we
consider

n−1
n

∑
t=1

(xt − x̄0)
(
εt+1 +ηt+1 −ηt

)= n−1
n

∑
t=1

(yt − ȳ0 +ηt − η̄)
(
εt+1 +ηt+1 −ηt

)

= n−1
n

∑
t=1

(yt − ȳ0)εt+1 −n−1
n

∑
t=1

(ηt − η̄)2 +n−1
n

∑
t=1

ytηt+1 −n−1
n−1

∑
t=0

yt+1ηt+1

− ȳ0n−1
n

∑
t=1

(
ηt+1 −ηt

)+n−1
n

∑
t=1

(ηt − η̄)
(
εt+1 +ηt+1

)
,

where

n−1
n

∑
t=1

ytηt+1 −n−1
n−1

∑
t=0

yt+1ηt+1 = −n−1
n−1

∑
t=0

(yt+1 − yt )ηt+1 +n−1(ynη0 − y0η0)

= −n−1
n

∑
t=1

εtηt + Op(n−1) = op(1),

and ȳ0n−1 ∑n
t=1

(
ηt+1 −ηt

)+n−1 ∑n
t=1(ηt − η̄)

(
εt+1 +ηt+1

)= op(1).

Similarly, n−2 ∑n
t=1 (xt − x̄0)2 = n−2 ∑n

t=1 (yt − ȳ0)2 +op(1), so that

n(π̂LS −1) = n−1 ∑n
t=1 (xt − x̄0)

(
εt+1 +ηt+1 −ηt

)
n−2 ∑n

t=1 (xt − x̄0) xt

= n−1 ∑n
t=1 (yt − ȳ0)εt+1 +n−1 ∑n

t=1 η2
t −n−1 ∑n

t=1 εt+1ηt+1 +op(1)

n−2 ∑n
t=1 (yt − ȳ0)2 +op(1)

d→
[∫ 1

0
(Wu − W̄ )dWu −σ 2

η /σ 2
ε

]/∫ 1

0
(Wu − W̄ )2du.

n
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LEMMA A.1. Let �t be short for n−1/2 ∑n
t=1. Given Assumption 1 with p = 1, q = 0,

and π < 1, we have, for j ≥ 1 and d ≥ 0,

cov
(
�t xt− j ut+1,�t xt− j−d ut+1

)→ σ 4
ε ×

⎧⎪⎪⎨
⎪⎪⎩

1
1−π2 +2λ+ (1+π2)λ2 d = 0,

π
1−π2 −πλ2 d = 1,

πd

1−π2 d ≥ 2,

as n → ∞
Proof. Without loss of generality we set δ = ξ = 0. In our proof we use that

�t yt− j ηt = π�t yt− j−1ηt +�tεt− j ηt = π�t yt− j ηt+1 +�tεt− j ηt + Op(n−1/2).

(A.1)

We have

�t xt− j ut+1 = �t (yt− j +ηt− j )
(
εt+1 +ηt+1 −πηt

)
= �t yt− j εt+1 +�tηt− j εt+1 +�t yt− j ηt+1 −π�t yt− j ηt

+�tηt− j (ηt+1 −πηt )

(A.1)= �t yt− j εt+1 +�tηt− j εt+1

+�t yt− j ηt+1 −π2�t yt− j ηt+1 −π�tεt− j ηt

+�tηt− j (ηt+1 −πηt )+ Op(n−1/2)

= �t yt− j εt+1 +�tηt− j εt+1 −π�tηtεt− j + (1−π2)�t yt− j ηt+1

+�tηt− j (ηt+1 −πηt )+ Op(n−1/2)

= �t yt− j

{
εt+1 + (1−π2)ηt+1

}
+�tηt− j+1(εt+1 +ηt+1 −πηt )−π�tεt− j ηt + Op(n−1/2),

which is a sum of asymptotically uncorrelated terms. So the asymptotic variance is

avar(�t xt− j ut+1) = σ 2
y

{
σ 2
ε + (1−π2)2σ 2

η

}
+σ 2

η

{
σ 2
ε + (1+π2)σ 2

η

}
+π2σ 2

η σ 2
ε

= σ 4
ε

1−π2 + (1−π2)σ 2
ε σ 2

η + (1+π2)σ 2
η σ 2

ε + (1+π2)σ 4
η

= σ 4
ε

1−π2 +2σ 2
ε σ 2

η + (1+π2)σ 4
η

= σ 4
ε

{(
1−π2

)−1 +2λ+
(

1+π2
)

λ2
}

.

Next we analyze the covariances. The σ 4
ε -terms are given by

cov(�t yt− j εt+1,�t yt− j−dεt+1)

= cov
{
�t

(
πd yt− j−d + εt− j +·· ·+πd−1εt− j−d+1

)
εt+1,�t yt− j−dεt+1

}
= πd var(�t yt− j−dεt+1)

+ cov
{
�t

(
εt− j +·· ·+πd−1εt− j−d+1

)
εt+1,�t yt− j−dεt+1

}
= πd var(�t yt− j−dεt+1) → πd (1−π2)−1σ 4

ε , as n → ∞.
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The σ 2
η σ 2

ε -terms are given by �tηt− j εt+1 − π�tηtεt− j + (1 − π2)�t yt− j ηt+1 =
�tηt− j εt+1 −π�tηtεt− j + (1−π2)�t

(
πd yt− j−d +εt− j +·· ·+πd−1εt− j−d+1

)
ηt+1

such that

cov
{
�tηt− j εt+1 −π�tηtεt− j + (1−π2)�t yt− j ηt+1,�tηt− j−dεt+1 −π�tηtεt− j−d

+(1−π2)�t yt− j−dηt+1

}
= (1−π2)2πd var(�t yt− j−dηt+1)

+ cov
{
−π�tηtεt− j−d , (1−π2)�tπ

d−1εt− j−d+1ηt+1

}
= (1−π2)πdσ 2

η σ 2
ε − (1−π2)πdσ 2

η σ 2
ε = 0.

Finally, when d = 1, the σ 4
η -term is simply

cov(�tηt− j ηt+1 −π�tηt− j ηt ,�tηt− j−1ηt+1 −π�tηt− j−1ηt )

= cov(�tηt− j ηt+1,−π�tηt− j−1ηt ) = −πσ 4
η +o(1),

whereas this term is zero when d ≥ 2. n

Proof of Theorem 2. With an AR(1) specification for yt , we have

xt = πxt−1 + (1−π)(δ + ξ)+ εt +ηt −πηt−1.

Without loss of generality, we set δ = ξ = 0. By repeated substitution, xt = π j yt− j +εt +
πεt−1 +·· ·+π j−1εt− j+1 +ηt , and it follows that cov(xt , xt− j ) = π j cov(yt− j , xt− j ) =
π j var(yt− j ) = π j σ 2

y . Next, we consider the decomposition

π̂IV j = ∑n
t=1(xt− j − x̄ j )xt+1

∑n
t=1(xt− j − x̄ j )xt

= π + ∑n
t=1(xt− j − x̄ j )

(
εt+1 +ηt+1 −πηt

)
n−1 ∑n

t=1(xt− j − x̄ j )xt
.

From Lemma A.1 it follows that

avar

{
n−1/2

n

∑
t=1

(
xt− j − x̄ j

)(
εt+1 +ηt+1 −πηt

)}= σ 4
ε

{
1

1−π2 +2λ+ (1+π2)λ2
}

,

and that n−1 ∑n
t=1(xt− j − x̄ j )xt

p→ π j σ 2
y = π j σ 2

ε

1−π2 , so that n1/2(π̂IV j − π)
d→

N (0,σ 2
π̂IVj

), where

σ 2
π̂IVj

= σ 4
ε

{
1

1−π2 +2λ+ (1+π2)λ2
}( π j

1−π2 σ 2
ε

)−2

= π−2 j
{

1−π2 +2
(

1−π2
)2

λ+
(

1−π2
)

(1−π4)λ2
}

.

The proof for the case where π = 1 is given by Hall (1989). n

Proof of Theorem 3. The structure of the J × J matrix Mπ,λ follows from Lemma A.1,
and Vπ follows from the law of large numbers and the fact that cov(xt− j , xt ) = π j σ 2

y for
j ≥ 1.
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We seek a vector, α, that solves

min
α∈RJ

α′Mπ,λα(
α′Vπ

)2 .

This problem is clearly invariant to rescaling of α, so we can reformulate the problem as
minα α′Mπ,λα, s.t. α′Vπ = 1. The first-order conditions are simply 2Mπ,λα −ρVπ = 0,

where ρ is the Lagrange multiplier, so that α� = (V ′
π M−1

π,λVπ )−1 M−1
π,λVπ , is the solution

to the constrained problem. By the scale invariance of α, we have that α∗ = cM−1
π,λVπ

yields an optimal instrument for any c �= 0. n

Proof of Theorem 4. (i) When π < 1, the result follows from

n−1∑n
t=1(xt− j − x̄ j )xt = n−1∑n

t=1(yt− j − ȳj + η̄)(yt + ξ +ηt )

= n−1∑n
t=1(yt− j − ȳj )yt +op(1) = γ ( j)+op(1).

(i i) For the unit root case, the result follows from n−2 ∑n
t=1(xt− j − x̄ j )xt =∫ 1

0 (W (u)− W̄ )2du +op(1), and

n−2∑n
t=1(xt− j − x̄ j )xt+1 −n−2 ∑n

t=1(xt− j − x̄ j )xt = n−2

∑n
t=1(xt− j − x̄ j )�xt+1 = op(1),

for any j ≥ 0, and for j ≥ max(p,q), n−1 ∑n
t=1(xt− j − x̄ j )xt+1

d→∫ 1
0 (W (u)− W̄ )dW (u);

see Hall (1989). n

Proof of Lemma 3. For a positive matrix, A, with spectral radius r , we know from the
Perron-Frobenius theorem that Ak/rk → ab′ as k → ∞, where a and b are the (left and
right) eigenvectors associated with the largest eigenvalue of A, which equals the spectral
radius, r . Moreover, the elements of the vectors, a and b, are all strictly positive.

Define the vector of p consecutive autocovariances, γ ∗
j = (γj , . . . ,γj−p+1)′. Since π is

the spectral radius of 
, then (π−1
)kγ ∗
j converges to a limit that is proportional to the

eigenvector a as k → ∞. By the Yule-Walker equation, we have

γj+1 = ϕ1γj +·· ·+ϕpγj−p+1,

which implies that γ ∗
j+1 = 
γ ∗

j . Thus if we define the vector v j = π− j γ ∗
j ∈ Rp , then

v j+1 = (π−1
)v j . This shows that v j , as j → ∞, approaches the left eigenvector as-
sociated with π , which implies that v j+1 − v j → 0 as j → ∞. By considering the first
elements of the vectors v j+1 and v j , (which are nonzero because a is strictly positive),

it now follows that π− j+1γj+1 −π− j γj → 0, so that γj+1/γj → π . n
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