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SUMMARY
We introduce a multivariate generalized autoregressive conditional heteroskedasticity (GARCH) model that incor-
porates realized measures of variances and covariances. Realized measures extract information about the current
levels of volatilities and correlations from high-frequency data, which is particularly useful for modeling financial
returns during periods of rapid changes in the underlying covariance structure. When applied to market returns
in conjunction with returns on an individual asset, the model yields a dynamic model specification of the condi-
tional regression coefficient that is known as the beta. We apply the model to a large set of assets and find the
conditional betas to be far more variable than usually found with rolling-window regressions based exclusively
on daily returns. In the empirical part of the paper, we examine the cross-sectional as well as the time variation of
the conditional beta series during the financial crises. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Relatively accurate measurements of volatility and covariances can be computed from high-frequency
data, and such statistics are commonly referred to as realized measures. Incorporating realized mea-
sures when modeling the dynamic properties of volatility is very beneficial, and leads to better
empirical fit than conventional generalized autoregressive conditional heteroskedasticity (GARCH)
models, which only use daily returns. The reason is that returns yield very weak signals about latent
volatility, whereas realized measures provide accurate measurements. The latter is particularly useful
during times of rapid changes in volatility and correlations.

In this paper we propose a multivariate GARCH-type model that utilizes and models realized mea-
sures of volatility and correlations. The model has a hierarchical structure where the ‘market’ return
is modeled with a univariate realized GARCH model (see Hansen and Huang, 2012; Hansen et al.,
2012). A multivariate structure is constructed by modeling ‘individual’ returns conditional on the past
and contemporary market variables (return and volatility). The resulting model has the structure of
a dynamic capital asset pricing model (CAPM) that enables us to extract the ‘betas’ and study their
dynamic properties. Moreover, the model is complete in the sense that all observables (returns, real-
ized volatilities and realized correlations) are modeled. The latter enables us to infer the distribution of
multi-period returns including the joint distribution of ‘market’ returns and ‘individual’ returns over
longer horizons.

The main contributions of our paper are the following. We propose a flexible and tractable
framework that enables the modeling of a potentially large set of assets. Unlike conventional mul-
tivariate GARCH models, which can suffer from the curse of dimensionality and estimation issues,
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REALIZED BETA GARCH 775

we avoid such issues by incorporating realized measures and the use of measurement equations.
The measurement equations tie realized measures to latent volatilities and correlations, and this leads
to a useful regularization of the model. This particular structure was chosen for a number of reasons.
First, the model provides a good empirical fit for the wide range of assets used in our empirical study;
second, the structure of the model is amenable to a deeper analysis of secondary quantities such as
betas; third, the model is simple to estimate, which is particularly important when a large set of assets
are to be analyzed, as is the case in our empirical analysis.

The proposed model has a hierarchical structure in which the market return and a corresponding
realized measure form the core of the model. The model can be extended to an arbitrarily large set of
individual returns, by adding a conditional model for an individual return and two realized measures,
one being a realized measure of return volatility, and the other a realized measure of the correlation
between the individual return and the market. This yields a flexible model with a dynamic covariance
structure that is constantly revised by using the information contained in the realized measures.

The concept of realized betas is not new. Bollerslev and Zhang (2003) carried out a large-scale esti-
mation of the Fama–French three-factor model using high-frequency (5-minute) data on 6400 stocks
over a period of 7 years. Their analysis showed that high-frequency data can improve the pricing accu-
racy of asset pricing models. Their approach differs from ours in important ways. For instance, they
model raw realized factor loadings and use simple time series processes to forecast these. Thus there
is no explicit link between realized and conditional moments of returns in their framework. Nor do
they explicitly account for the measurement error (sampling error) in the realized quantities. Another
related paper is Andersen et al. (2006), who study the time variation in realized variances, covariances
and betas using daily returns to construct quarterly realized measures. They find evidence of long
memory in the time series for variance and covariances, while the realized beta time series is less per-
sistent and seemingly a short-memory process, which is indicative of fractional cointegration between
realized volatility and realized covariance. Other related studies include Barndorff-Nielsen and
Shephard (2004a), who established asymptotic results for realized beta, and Dovonon et al. (2013),
who established the theory for bootstrap inference. MSE-optimal estimation of realized betas was
analyzed in Bandi and Russell (2005), and Patton and Verardo (2012) studied the impact of news
on betas. Morana (2009) uses realized betas to explain the variation in expected returns, and Corradi
et al. (2011) use realized betas to extract the conditional ‘alphas’. The importance of separating jump
and continuous components of returns in relation to betas, as highlighted in Todorov and Bollerslev
(2010) and Tsay and Yeh (2011), allow the dynamic beta to vary within the day.

The use of realized volatility measures in this context yields valuable insight about the degree of
time variation in the betas, which has been up for debate in the literature. The studies by Ferson
and Harvey (1991, 1993) and Shanken (1990) specify parametric relationships between betas and
proxies for the state of the economy, and find support for time-varying betas. Gomes et al. (2003)
provide a theoretical justification for a time-varying conditional beta specification in the context of
a dynamic general equilibrium production economy. Conditional betas have been modeled by means
of conventional GARCH models by Braun et al. (1995) and Bekaert and Wu (2000), among others.
Lewellen and Nagel (2006) argue that variation in betas would have to be ‘implausibly large’ to explain
important asset-pricing anomalies. In our empirical analysis we do find a substantial amount of time
variation in the conditional betas. This is particularly the case during the global financial crisis period.
We find the variation in betas to be substantial, even over short periods of time, such as a quarter.

The research devoted to high-frequency volatility measures was spurred by Andersen and Bollerslev
(1998), who documented that the sum of squared intra-day returns, known as the realized variance,
provides an accurate measurement of daily volatility. The theoretical foundation of realized variance
was developed in Andersen et al. (2001a) and Barndorff-Nielsen and Shephard (2002). A large
number of related estimators, such as realized bipower variation, realized kernels, multi-scale estima-
tors, pre-averaging estimators and Markov chain estimators, have been proposed to deal with issues
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776 P. R. HANSEN, A. LUNDE AND V. VOEV

such as jumps and market microstructure frictions (see Barndorff-Nielsen and Shephard (2004b);
Barndorff-Nielsen et al. (2008); Zhang (2006), Jacod et al. (2009); Hansen and Horel (2009); and
references therein. The multivariate extensions of the concept of realized volatility is theoretically
developed in Barndorff-Nielsen and Shephard (2004a). Estimators that are robust to noise and/or asyn-
chronous observations have been proposed by Hayashi and Yoshida (2005), Voev and Lunde (2007),
Griffin and Oomen (2011), Christensen et al. (2010) and Barndorff-Nielsen et al. (2011). In this paper
we will rely on the multivariate kernel estimator by Barndorff-Nielsen et al. (2011), which guarantees
positive semi-definite estimates of the realized variance–covariance matrices.

While volatility is unobservable, the use of realized measures allows us to construct precise ex
post volatility proxies. Currently, a growing body of research investigates the extent to which realized
measures can be used to improve the accuracy of volatility forecasts. Hansen and Lunde (2011) cate-
gorize the existing approaches into two broad classes: reduced form and model based. Reduced-form
volatility forecasts are based on a time series model for the series of realized measures, whereas a
model-based forecast rests on a parametric model for the return distribution. Model-based approaches
effectively build on GARCH models in which a realized measure is included as an exogenous variable
in the GARCH equation (see, for example, Engle, 2002b). A complete framework that jointly specifies
models for returns and realized measures of volatility was first proposed by Engle and Gallo (2006),
who refer to their model as the multiplicative error model (MEM). A simplified MEM structure was
proposed in Shephard and Sheppard (2010), who referred to their model as the HEAVY model. The
realized GARCH model by Hansen et al. (2012) involves a different approach to the joint modeling
of returns and realized volatility measures. A key component of the realized GARCH model is a mea-
surement equation that relates the realized measure to the underlying conditional variance. This idea
is generalized to a multivariate framework in this paper, where we introduce measurement equations
for the realized measures of correlations.

The rest of the paper is structured as follows. The model and the underlying theory are presented in
Section 2, and we discuss estimation of the model in Section 3. In Section 4 we show how multi-step
predictions of volatilities and correlations as well as forecasts of return densities can be obtained from
the model. Section 5 contains an empirical application of the model and Section 6 concludes. Detailed
information about the data construction, and auxiliary results that are useful for the estimation are
presented in two appendices.

2. A HIERARCHICAL REALIZED GARCH FRAMEWORK

Broadly speaking, our objective is the same as that of existing multivariate GARCH models, which
is to model the conditional distribution of a vector of returns. Unlike conventional GARCH models,
however, we also model the realized measures of volatility and correlation and make extensive use of
these in the modeling of returns. The realized measures are highly informative about local (in time)
levels of volatility and correlation. By tying all individual return series to the market return, we are
implicitly imposing a factor structure on the volatility, where the variation in the correlation structure
is driven by time variation in the correlations between the market return and the individual assets. This
keeps the model relatively simple and parsimonious, facilitates estimation, and makes it easy to relate
key variables in the model to dynamic betas.

Our model has a hierarchical structure. The core of our framework is a marginal model for the mar-
ket return and its realized measure of volatility. Individual returns, their realized measures of volatility
and correlation (with the market) are then modeled conditionally on market variables. The marginal
model we use for the market-specific time series is a reparametrized version of the realized EGARCH
model by Hansen and Huang (2012; see also Hansen et al., 2012, section 6.3), which shares certain
features with the EGARCH model by Nelson (1991). The conditional model we use in this paper
is new.
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REALIZED BETA GARCH 777

Initially, we present the realized beta GARCH model in the simplest situation with a bivariate vector
of returns (the market return and an individual asset return) and the corresponding 2 � 2 matrix of
realized volatility measures. Subsequently, we discuss the straightforward extension to an arbitrary
number of individual assets.

2.1. Notation and Modeling Strategy

Let r0;t and x0;t denote the market return and a corresponding realized measure of volatility, respec-
tively. Similarly, we use the notation r1;t and x1;t for the same variables associated with an individual
asset return, and use y1;t to denote a realized measure of correlation, where y1;t 2 .�1; 1/.

In this context with two returns, two realized measures of volatility and a realized measure of
correlation, we have five observable variables to model. The natural filtration is given by

Ft D � .Xt ;Xt�1; : : :/ with Xt D
�
r0;t ; r1;t ; x0;t ; x1;t ; y1;t

�0
and we define the conditional variances, h0;t D var

�
r0;t jFt�1

�
and h1;t D var

�
r1;t jFt�1

�
, much

like in standard GARCH models, the key difference being that the information set, Ft , is richer in
the present framework. We also define the conditional correlation, �1;t D corr

�
r0;t ; r1;t jFt�1

�
, and it

follows directly that the ‘beta’

ˇ1;t D cov
�
r1;t ; r0;t jFt�1

�
=var

�
r0;t jFt�1

�
(1)

is given by ˇ1;t D �1;t
p
h1;t=h0;t . This establishes a connection to a dynamic CAPM and we are

particularly interested in the dynamic properties of ˇ1;t .
The structure of our model will take advantage of the simple decomposition of the

conditional density:

f
�
r0;t ; x0;t ; r1;t ; x1;t ; y1;t jFt�1

�
D f

�
r0;t ; x0;t jFt�1

�
f
�
r1;t ; x1;t ; y1;t jr0;t ; x0;t ;Ft�1

�
(2)

which serves to illustrate the hierarchical structure of our model. We will adopt the realized EGARCH
model as our specification of the first term, f

�
r0;t ; x0;t jFt�1

�
. The specification for the second con-

ditional density, f
�
r1;t ; x1;t ; y1;t jr0;t ; x0;t ;Ft�1

�
, defines how the time series associated with the

individual asset evolves, conditional on contemporary market variables. Our specification of this con-
ditional density has a structure that is similar to that of the univariate realized GARCH model, but
has some important adaptations for the modeling of the correlation structure. Realized correlation
measures between the individual assets are not needed, because it is implicitly assumed that these
correlations are characterized through the correlations between the individual returns and the market
return. In our empirical analysis, we investigate the validity of this assumption.

2.2. Realized EGARCH Model for Market Returns

The realized EGARCH model for market returns and realized measures of volatility is given by the
following three equations:

r0;t D �0 C
p
h0;t´0;t ; (3)

log h0;t D a0 C b0 log h0;t�1 C c0 log x0;t�1 C �0
�
´0;t�1

�
(4)

log x0;t D �0 C '0 log h0;t C ı0
�
´0;t

�
C u0;t (5)

Copyright © 2014 John Wiley & Sons, Ltd. J. Appl. Econ. 29: 774–799 (2014)
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778 P. R. HANSEN, A. LUNDE AND V. VOEV

Here, we do not follow the conventional GARCH notation, because we want to reserve the notation
‘ˇ’ for the market-beta variable we defined in equation (1).

In our likelihood analysis we specify ´0;t � i:i:d: N.0; 1/ and u0;t � i:i:d: N
�
0; �2u0

�
. The prop-

erties of the estimators do not critically hinge on this Gaussian specification being correct. Still, the
Gaussian specification for u0;t can be motivated by findings in Andersen et al. (2001a, 2001b, 2003),
who document that realized volatility is approximately log-normal. Furthermore, Andersen et al.
(2001b) find that returns standardized by realized volatility are approximately normally distributed.

The functions �.´/ and ı.´/ are called leverage functions because they model aspects related to the
leverage effect, which refers to the dependence between returns and volatility. Hansen et al. (2012)
found that a simple second-order polynomial provides a good empirical fit. We will adopt this structure
in our framework, and set �.´/ D �1´ C �2

�
´2 � 1

�
and ı.´/ D ı1´ C ı2

�
´2 � 1

�
: This leads to

a GARCH equation that is somewhat similar to that of an EGARCH model. Unlike the EGARCH
model, however, we also utilize the realized measure, x0;t�1, to model the dynamics of volatility.

We refer to the first two equations, (3) and (4), as the return equation and the GARCH equation,
respectively. These two equations define a GARCH-X model, similar to those estimated by Engle
(2002b), Barndorff-Nielsen and Shephard (2007) and Visser (2011). See also Chen et al. (2011) for
additional variants of the GARCH-X model and some related models.

The third equation, (5), called the measurement equation, completes the specification of the density,
f
�
r0;t ; x0;t jFt�1

�
. Tying the realized measure, xt , to the conditional variance, ht ; is motivated by the

fact that the GARCH equation trivially implies that

log .rt � �/
2 D log ht C log ´2t

Since the realized measure, xt , is similar to r2t in the sense of being a measurement of volatility
(just far more accurate), it is natural to expect that log xt � log ht Cg .´t /C errort , for some function
g. Because we may compute realized measures of volatility over a shorter period of time than the
one spanned by the return (e.g. if we use only data from the trading session, which often excludes
the overnight period), some flexibility in the specification may be required motivating the ‘intercept’
�0 and the ‘slope’ '0. So long as x0;t is roughly proportional to h0;t , we should expect '0 ' 1; and
�0 < 0, which is always the case empirically.

2.3. Conditional Model for an Individual Asset Return and its Realized Measures

To extend the framework to a joint model for the market returns/volatility and another asset’s
return/volatility and their correlation, we shall formulate a model for the time series associated
with the individual asset, conditional on contemporaneous ‘market’ variables, i.e. a specification
for f

�
r1;t ; x1;t ; y1;t jr0;t ; x0;t ;Ft�1

�
. We utilize a further decomposition of this conditional density,

specifically

f
�
r1;t ; x1;t ; y1;t jr0;t ; x0;t ;Ft�1

�
D f

�
r1;t jr0;t ; x0;t ;Ft�1

�
f
�
x1;t ; y1;t jr1;t ; r0;t ; x0;t ;Ft�1

�
The first part, f

�
r1;t jr0;t ; x0;t ;Ft�1

�
, is modeled with

r1;t D �1 C
p
h1;t´1;t ; (6)

where the dependence on
�
r0;t ; x0;t

�
operates through, �1;t D cov

�
´0;t ; ´1;t jFt�1

�
, the conditional

correlation. This reveals the ‘factor’ structure, since we have

´1;t D �1;t´0;t C
q
1 � �21;tw1;t

Copyright © 2014 John Wiley & Sons, Ltd. J. Appl. Econ. 29: 774–799 (2014)
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REALIZED BETA GARCH 779

where w1;t D
�
´1;t � �1;t´0;t

�
=
q
1 � �21;t has mean zero, unit variance and is uncorrelated with

´0;t . Hence the studentized returns for the individual asset is a linear combination of the studentized
market return and the idiosyncratic component w1;t , where the relative weighting (defined by �1;t ) is
time varying.

To complete this part of the model, we need to specify the dynamics for h1;t and �1;t . For h1;t we
use the GARCH equation:

log h1;t D a1 C b1 log h1;t�1 C c1 log x1;t�1 C d1 log h0;t C �1
�
´1;t�1

�
(7)

which only differs from equation (4) by the presence of the term, d1 log h0;t . Recall that h0;t is
Ft�1-measurable, so that the presence of h0;t on the right-hand side does not contradict our definition
of h1;t . The parameter d1 can be interpreted as a spillover effect that measures the extent to which the
market’s volatility affects the volatility of the individual asset while accounting for the asset-specific
volatility dynamics.

For the dynamic modeling of �1;t we shall use the Fisher transformation (also known as the inverse
hyperbolic tangent, arctanh), � 7! ±.�/ � 1

2
log 1C�

1��
, which is a one-to-one mapping from .�1; 1/

into R. The GARCH equation for the transformed correlations is given by

±
�
�1;t

�
D a10 C b10±

�
�1;t�1

�
C c10±

�
y1;t�1

�
Finally, to specify the conditional density, f

�
x1;t ; y1;t jr1;t ; r0;t ; x0;t ;Ft�1

�
, for the last two realized

measures we use the measurement equations

log x1;t D �1 C '1 log h1;t C ı1.´1;t /C u1;t (8)

±.y1;t / D �10 C '10±.�1;t /C v1;t (9)

These measurement errors will be assumed to be independent of
�
´0;t ; ´1;t

�
, implying that the

conditioning on
�
r1;t ; r0;t

�
is captured by ı1.´1;t /. The three measurement errors are allowed to be

correlated and we define their covariance matrix:

† D var

0
@ u0;tu1;t
v1;t

1
A D

2
4 �2u0 �u0;u1 �u0;v1� �2u1 �u1;v1
� � �2v1

3
5

We find significant correlation across all measurement errors in our empirical application.

2.4. The Extensions to Multiple Individual Assets

We have specified the model structure for a market return and a single individual asset (along with
their corresponding realized volatility variables). Next, we discuss the extension to multiple assets.
Fortunately, the existing structure is amendable to this extension, albeit some additional assumptions
are needed before certain interpretations carry over to the general context. First, we need to redefine
the natural filtration, Ft D � .Xt ;Xt�1; : : :/, to be defined by the full set of variables:

Xt D
�
r0;t ; r1;t ; : : : ; rN;t ; x0;t ; x1;t ; : : : ; xN;ty1;t : : : ; yN;t

�0
where N is the number of individual assets in our analysis. The conditional model for the individual
asset is assumed to be invariant to this enhancement of the information set. This implicitly assumes
that the dynamic variation in correlations between individual assets is fully explained by the individual

Copyright © 2014 John Wiley & Sons, Ltd. J. Appl. Econ. 29: 774–799 (2014)
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780 P. R. HANSEN, A. LUNDE AND V. VOEV

asset’s correlation with the market return. Put differently: The variation in the .N C1/� .N C1/ con-
ditional covariance matrix is fully described by theN C1 conditional variances and theN conditional
correlations. This structure has testable implications that we return to in our empirical section.

In practice, the estimation proceeds by first estimating the model for the market data
�
r0;t ; x0;t

�
and

then estimating each conditional model for
�
ri;t ; xi;t ; yi;t

�
separately for i D 1; 2; : : : ; N . This can

be done for a very large number of assets. For instance, in the empirical analysis we estimated the
realized beta GARCH model for about 600 assets.

For model diagnostics, in particular the validity of the single-factor structure, we define conditional
studentized residuals:

Owi;t D
Ó i;t � O�i;t Ó0;tq

1 � O�2i;t

; i D 1; : : : ; N

So far the model structure has been silent about the dependence structure across the population
equivalents of these residuals, and the same is true for the conditional error terms,

�
ui;t ; vi;t ju0;t

�
,

across individual assets. We cast light on this dependence structure in our empirical section.

3. ESTIMATION

In this section, we define the quasi log-likelihood function and exploit its structure to sim-
plify the estimation problem. We have five observed variables

�
r0;t ; x0;t ; r1;t ; x1;t ; y1;t

�
and we

consider their joint density conditional on past information, Ft�1. Without loss of generality
we can decompose this ‘joint’ density as stated in equation (2), and, for the purpose of estimation,
we adopt Gaussian specifications for the ‘marginal’ and ‘conditional’ densities, f

�
r0;t ; x0;t jFt�1

�
and f

�
ri;t ; xi;t ; yi;t jr0;t ; x0;t ;Ft�1

�
; i D 1; : : : ; N . Moreover, we assume that the studen-

tized returns,
�
´0;t ; ´1;t

�
, are independent of the error terms in the three measurement equations,�

u0;t ; u1;t ; v1;t
�
. This enables us to decompose the quasi log-likelihood function into four terms as we

discuss below.

3.1. The Marginal Model for Market Variables

The marginal model is essentially that of Hansen et al. (2012), which implicitly entails a further
decomposition of the conditional density:

f
�
r0;t ; x0;t jFt�1

�
D fr0

�
r0;t jFt�1

�
fx0jr0

�
x0;t jr0;t ;Ft�1

�
The two conditional densities are given from r0;t � N

�
�0; h0;t

�
and log x0;t �

N
�
�0 C '0 log h0;t C �0

�
´0;t

�
; �2u0

�
, which leads to the following two contributions to (minus two

times) the log-likelihood function:

`´0 D

TX
tD1

log h0;t C

�
r0;t � �0

�2
h0;t

D

TX
tD1

log h0;t C ´
2
0;t ;

`u0 D

TX
tD1

log �2u0 C

�
log x0;t � �0 � '0 log h0;t � �0

�
´0;t

��2
�2u0

D

TX
tD1

log �2u0 C
u20;t

�2u0
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REALIZED BETA GARCH 781

3.2. The Conditional Model for Individual Assets

Next, we consider the likelihood contributions from the conditional model. The conditional model also
permits a further decomposition of the conditional density:

f
�
r1;t ; x1;t ; y1;t jr0;t ; x0;t ;Ft�1

�
D fr1jr0;x0

�
r1;t jr0;t ; x0;t ;Ft�1

�
� fx1;y1jr1;r0;x0

�
x1;t ; y1;t jr1;t ; r0;t ; x0;t ;Ft�1

�
The first term is the density of the individual asset’s return conditional on the contemporaneous

market variables (and the past). Due to the Gaussian specification we only need to derive the condi-
tional mean and variance of r1;t in order to compute the appropriate likelihood term. The assumed
independence between

�
´0;t ; ´1;t

�
and u0;t and the i.i.d. assumptions imply that

E
�
g
�
r1;t

�
jr0;t ; x0;t ;Ft�1

�
D E

�
g
�
r1;t

�
j´0;t ; u0;t ;Ft�1

�
D E

�
g
�
r1;t

�
jr0;t ;Ft�1

�
for any function g for which the conditional mean is well defined. Hence

var
�
r1;t jr0;t ; x0;t ;Ft�1

�
D var

�
r1;t jr0;t ;Ft�1

�
D h1;t �

�
�1;t

p
h0;th1;t

�2
=h0;t D

�
1 � �21;t

�
h1;t

since cov
�
r1;t ; r0;t jFt�1

�
D �1;t

p
h0;th1;t . Next, the conditional mean of r1;t is

E
�
r1;t jr0;t ; x0;t ;Ft�1

�
D �1 C ˇ1;t

�
r0;t � �0

�
D �1 C

�1;t
p
h0;th1;t

h0;t

�
r0;t � �0

�
D �1 C �1;t

p
h1;t´0;t

The contribution to (minus two times) the log-likelihood function from this conditional density is

`´1j´0 D

TX
tD1

log
��
1 � �21;t

�
h1;t

�
C

�
r1;t � �1 � �1;t

p
h1;t´0;t

�2
�
1 � �21;t

�
h1;t

The last likelihood term, `u1;v1ju0 , which relates to the two measurement equations is associ-
ated with the conditional density, fx1;y1jr1;r0;x0

�
x1;t ; y1;t jr1;t ; r0;t ; x0;t ;Ft�1

�
. First, we note that the

conditional distribution of
�
u1;t ; v1;t

�
given

�
u0;t ; ´0;t ; ´1;t

�
is Gaussian with mean

�
�u1;u0=�

2
u0

�v1;u0=�
2
u0

	
u0;t

and variance

� D



�2u1 �u1;v1
� �2v1

�
�



�u1;u0
�v1;u0

�
1

�2u0

�
�u0;u1 �u0;v1

�

Thus it does not depend on
�
´0;t ; ´1;t

�
owing to the assumed independence. The implication is that

fx1;y1jr1;r0;x0
�
x1;t ; y1;t jr1;t ; r0;t ; x0;t ;Ft�1

�
D fx1;y1jr1;r0;x0

�
x1;t ; y1;t ju0;t ;Ft�1

�
Copyright © 2014 John Wiley & Sons, Ltd. J. Appl. Econ. 29: 774–799 (2014)
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782 P. R. HANSEN, A. LUNDE AND V. VOEV

and that the last term in (minus two times) the log-likelihood is given by

`u1;v1ju0 D

TX
tD1

log det�C U 01;t�
�1U1;t

where we have defined

U1;t D

�
u1;t
v1;t

	
�

�
�u1;u0=�

2
u0

�v1;u0=�
2
u0

	
u0;t

The parameters are now estimated by maximizing ` D �1
2

�
`´0 C `u0 C `´1j´0 C `u1;v1ju0

�
:

Fortunately, the structure of this likelihood permits a number of simplifications, which greatly sim-
plify the computational burden in the estimation. These simplifications are detailed in Appendix B
(supporting information).

4. FORECASTING

In this section we discuss how multi-step predictions of volatilities and correlations, as well as return
density forecasts, can be obtained with our model. Denote Qh0;t � log h0;t ; Qhi;t � log hi;t and
Q�i;t � ±.�i;t /. Point forecasts turn out to be very easy to obtain owing to the fact that the vector�
Qh0;t ; Qhi;t ; Q�i;t

�
can be represented as a VARMA(1,1) system. Substituting each of the measurement

equations (5), (8) and (9) in the equations for the corresponding conditional moments and imposing,
'0 D 1, one obtains

Qh0;tC1 D a0 C c0�0 C .b0 C c0'0/ Qh0;t C c0ı0
�
´0;t

�
C �0

�
´0;t

�
C c0u0;t

Qhi;tC1 D ai C ci�i C .bi C ci'i / Qhi;t C di Qh0;tC1 C ciıi
�
´i;t

�
C �i

�
´i;t

�
C ciui;t (10)

Q�i;tC1 D ai0 C ci0�i0 C .bi0 C ci0'i0/ Q�i;t C ci0vi;t

Let Vt D
�
Qh0;t ; Qhi;t ; Q�i;t

�0
, then by substituting the equation for Qh0;tC1 into that for Qhi;tC1, one can

show that

VtC1 D C C AVt C B"t

where "t D
�
ı0
�
´0;t

�
; �0

�
´0;t

�
; ıi .´i;t /; �i .´i;t /; u0;t ; ui;t ; vi;t

�0
and

C D

2
4 a0 C c0�0
a1 C ci�i C di .a0 C c0�0/

ai0 C ci0�i0

3
5 ; A D

2
4 b0 C c0'0 0 0

di .b0 C c0'0/ bi C ci'i 0

0 0 bi0 C ci0'i0

3
5 ;

B D

2
4 c0 1 0 0 c0 0 0

dic0 di ci 1 dic0 c1 0

0 0 0 0 0 0 ci0

3
5

The innovation process, "t , is a martingale difference sequence but is slightly heterogeneous,
because time-variation in �i;t induces time variation in the distribution of "t . It follows that
E .VtCkjVt / D AkVt C

Pk�1

jD0A
jC , which can be used to produce a k-step-ahead forecast of VtCk .

Copyright © 2014 John Wiley & Sons, Ltd. J. Appl. Econ. 29: 774–799 (2014)
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REALIZED BETA GARCH 783

Forecast of the conditional distribution of VtCkjFt , which can be used to deduce unbiased forecasts
of the non-transformed variables, e.g. h0;t D exp

�
Qh0;t

�
, can be obtained by simulation or bootstrap

methods. In the simulation approach, we first generate

�t WD

0
BBBB@
´0;t
Q́ i;t
u0;t
ui;t
vi;t

1
CCCCA � N5

�
0;



I2 0

0 †

�	
; t D 1; : : : ; N

Given an initialization for �i;0; one can produce the entire time series ¹ Q�i;tº from ¹vi;tº using

equation (10). Next one can define ´i;t D �i;t´0;t C
q
1 � �2i;twi;t , which has the proper correlation

with ´0;t , and thus finally "t can be computed. The alternative approach is to bootstrap the residu-
als, . O�1; : : : ; O�N /, rather than simulating them from the Gaussian distribution. Both approaches were
explored in Lunde and Olesen (2013), who produced 1-, 5- and 20-day-ahead predictions using the
realized exponential GARCH model. In their application, which used returns on energy forwards, the
out-of-sample losses for the two approaches (simulations or bootstrap) were indistinguishable, with
either method being clearly superior to the forecasts produced by the conventional EGARCH models.
In the present context, where the system may be large, the bootstrap approach does have a clear advan-
tage, in that it does not require one to formulate explicit assumptions about the correlation structure of
thewi;t -variables, nor specify the correlation structure of measurement errors across individual assets.

5. EMPIRICAL ANALYSIS

5.1. Data Description

The model is estimated for a large cross-section of assets. We included any asset that was a constituent
of the S&P 500 index at some point between 19 January 2006 and 25 June 2010, albeit excluding
assets for which we had fewer than 1000 daily observations during our sample period from 3 January
2002 to the end of 2009. The data were obtained by merging information from the TAQ dataset and the
CRSP daily stock files (see Appendix A (supporting information) for further details), and resulted in
a total of 594 time series with distinct CRSP permanent company numbers (PERMNOs) and a sample
size that ranged from 1000 to 2008 observations for each of the individual stocks.

The high-frequency transaction data are cleaned according to the filtering algorithm described in
Barndorff-Nielsen et al. (2009), and the multivariate realized kernel by Barndorff-Nielsen et al. (2011)
is used as our realized measures of volatility and co-volatility. We use the exchange traded fund, SPY,
as a proxy for the market index in our empirical analysis, making the total number of assets in our
analysis 595.1

5.2. Empirical Results

A summary of the estimation results is presented in Table I and Figure 1.2 The first row in Table I
contains the estimates for the marginal model for the market return, as defined by equations (3-5), and

1 The model takes about 3 seconds to estimate for each asset using a workstation (XEON 3.07 GHz) when the simplifications
detailed in Appendix B (supporting information) are implemented. The structure is such that the conditional models (one for
each individual asset) can be estimated separately, so that one can take advantage of parallel computing.
2 The results reported are the estimates when imposing the restrictions 'i D 1, i D 0; 1; : : : ;N , which did not result in a
significant reduction of the log-likelihood function; see Hansen and Huang (2012) for a discussion on this. The initial values
for the latent variables, h0;t ; hi;t and �i;t , are treated as unknown parameters.

Copyright © 2014 John Wiley & Sons, Ltd. J. Appl. Econ. 29: 774–799 (2014)
DOI: 10.1002/jae
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REALIZED BETA GARCH 785

Figure 1. Histograms of the 594 parameter estimates for some selected parameters

the rest of the table presents a summary of the estimation results for the 594 conditional models, each
defined by equations: (6)–(9).3 To conserve space the cross-sectional statistics for the estimates of †
are omitted, but some selected estimates of † will be presented in Table II.

The parameter ci , which captures the effect of the lagged realized measure on the conditional vari-
ance, is large and significant, whereas the GARCH parameter, bi , is much smaller than is usually the
case for conventional GARCH models. The reason is that the realized measure is far more informative
about volatility than the squared return, which makes the model far more adaptive to abrupt changes
in volatility, which in turn leads to a better empirical fit and more accurate forecast. The negative esti-
mates of �i1 and positive estimates of �i2 indicate the presence of a leverage effect; see Hansen et al.
(2012) for the relation of these leverage functions to the news impact curve. Examining the param-
eters of the measurement equation, we find that �i is negative. This is to be expected because the
realized measures are computed over the open-to-close period, which only captures a fraction of daily
(close-to-close) volatility. The conditional model for the individual stocks has the additional parame-
ter, di , in the GARCH equation. This parameter measures the spillover effect from market volatility
to individual stock volatility. The mean and the median of this coefficient is positive, and so are the
vast majority of the individual estimates. Altogether this shows that market volatility tends to have a
positive contemporaneous effect on individual asset volatility.

3 Note that a row in Table I does not present the estimates for a particular stock. For example, the 1% quantile of b0 and c0
may not be estimates for the same asset.

Copyright © 2014 John Wiley & Sons, Ltd. J. Appl. Econ. 29: 774–799 (2014)
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786 P. R. HANSEN, A. LUNDE AND V. VOEV

Table II. Selected point estimates of the measurement error variance

CVX"
0:113 0:493 0:309
0:066 0:159 0:016
0:011 0:001 0:012

# UTX"
0:114 0:434 0:391
0:064 0:194 0:117
0:019 0:007 0:020

# WMB"
0:114 0.409 0:436
0:065 0:221 0:118
0:023 0:009 0:025

#

EK"
0:114 0:524 0:376
0:068 0:149 0:157
0:019 0:009 0:022

# SNV"
0:114 0:428 0:365
0:060 0:170 0:046
0:018 0:003 0:021

# MSFT"
0:113 0:356 0:372
0:058 0:236 0:097
0:018 0:007 0:021

#

Note: The estimated measurement error variance matrix, † D var .u0;t ; ui;t ; vi;t /, for six
selected assets: CVX, Chevron; UTX, United Technologies; WMB, Williams Companies; EK,
Eastman Kodak; SNV, Synovus Financial; MSFT, Microsoft. The numbers in italics (upper right
triangular) are correlations.

RK CVX hCVX ,t

2007 2008 2009 2010

1
2
3

10
20
30

100
200 RK CVX hCVX ,t

RK SPY hSPY ,t

2007 2008 2009 2010

0.1
0.2

1
2

10
20

100 RK SPY hSPY ,t

Figure 2. Realized kernel (RK) variance and conditional variance of CVX (upper panel) and SPY (lower panel)
over the period 2007–2009

The cross-sectional variation of parameter estimates are presented in the histogram plots in Figure 2.
Both Table I and Figure 1 show that the parameter estimates are quite stable in our cross-section of
stocks. Only O'i0 is estimated to have an extreme value in some cases, but even in these cases we
have verified that the estimated conditional variances and correlations are in agreement with their
corresponding realized measures.

Table II presents the estimates of † for six selected assets. The upper left element in these matrices
is the estimated variance of u0;t in the measurement equation for the realized measures associated
with the market return. This point estimate varies slightly across the six matrices due to variation in
the sample period for the six assets. Note that the measurement error variance for the individual assets
tends to be larger than that of the market. This is to be expected because the realized measure for the
market return is based on a larger number of high-frequency data. Also note that there is substantial
correlation across the measurements error, in particular for the realized measures of volatility.

Copyright © 2014 John Wiley & Sons, Ltd. J. Appl. Econ. 29: 774–799 (2014)
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REALIZED BETA GARCH 787

realized correlation model correlation 
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realized beta model beta 

Figure 3. Realized and conditional correlation (upper panel) and beta (lower panel) of CVX (permno number
14,541) for the period 2002–2009

In Figure 2 we present the realized variance of CVX and SPY against the model-implied conditional
variance. Clearly, the conditional variance tracks the realized series closely but has less high-frequency
variation. Naturally, this relation is largely imposed by the model’s structure, because the measurement
equation implies a (noisy) relationship between the conditional variance and realized measure. The
apparent downward bias of the realized measure is due to the fact that it is computed over a fraction
of the day (roughly 6.5 hours where assets are actively traded). This aspect of the realized measures
explains why the coefficients �0 and �1 are negative.

We turn next to the model-implied betas given by

Ǒ
t D O�t

q
Oh1;t= Oh0;t (11)

where O�t D �t
�
O	
�

and Ohi;t D hi;t
�
O	
�
; i D 0; 1, denote the estimated quantities. The time series can

be contrasted to the realized betas:

Q̌
t D y1;t

p
x1;t=x0;t (12)

that are computed exclusively from high-frequency data on day t .
The model-implied betas take into account the presence of measurement error in the realized quan-

tities as well as the dynamic linkages between realized measures and conditional moments. To get an
idea of the time variation of Ǒt in our model compared to its raw realized counterpart, we continue
with our previous example, and present graphic results for the realized and the conditional beta and
correlation of CVX in Figure 3. The correlation changes rapidly during the sample period, which car-
ries over to the systematic risk of CVX, as defined by its beta. In fact, the beta for CVX ranges from
about 0 to more than 1.5 over this period.

In Figure 4 we present quantile time series plots of the cross-sectional variation in the conditional
correlation and beta during the financial crisis, where the time of the collapse of Lehman Brothers is

Copyright © 2014 John Wiley & Sons, Ltd. J. Appl. Econ. 29: 774–799 (2014)
DOI: 10.1002/jae
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788 P. R. HANSEN, A. LUNDE AND V. VOEV
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Figure 4. Quantile time series plot of conditional realized GARCH correlations for the period June 2008 to
December 2009

clearly identified. It is, perhaps, the period leading up to the collapse of Lehman Brothers that stands
out most. On 15 July the SEC temporarily prohibited naked short selling in the securities of Fannie
Mae and Freddie Mac. The time of this announcement coincides with some major changes in the
cross-sectional distribution of correlations and betas, although we do not claim any causal relation
in this matter. In the subsequent period correlations decreased (on average) and the cross-sectional
distribution became increasingly left skewed. This might suggest that assets became somewhat more
susceptible to idiosyncratic shocks and less so to market-wide shocks. It is therefore perhaps surprising
that the distribution of conditional betas became more right skewed. The explanation is that individual
asset volatility increased relatively more than market volatility, which more than offset the reduction in
average correlation. The mechanics of this are easily understood from the definition of the conditional
beta, ˇi;t D �i;t

p
hi;t=h0;t . After this initial chaotic period correlations started to increase and the

variation in betas decreased. Eventually, correlations peaked around mid November with a median
value of over 70%—well above the 55% value at the beginning of June.

It is important to understand that the high degree of variation that we find in the betas should be
attributed to variation in the true conditional betas, rather than an artifact of the variation in the realized
quantities. The reason is that the variation in the beta produced by the model is driven by features
of daily returns—features that the model attempts to explain to the extent it is possible. From the
maximization of the likelihood function it is evident that the realized measures are useful predictors of
the covariance structure of daily returns. Conversely, had there been little variation in the covariance

Copyright © 2014 John Wiley & Sons, Ltd. J. Appl. Econ. 29: 774–799 (2014)
DOI: 10.1002/jae
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REALIZED BETA GARCH 789

structure of daily returns, then the likelihood estimation would not produce estimates that caused the
realized measures to induce a high degree of variation in the conditional covariance structure. The
finding that correlations and betas exhibit a high degree of variation is an important observation.
The conventional approach to estimating dynamic betas typically involves rolling window regression
methods using daily returns. This approach induces some degree of smoothing, so it is not surprising
that the regression-based estimates result in a variation of a much smaller magnitude. Based on rolling
window estimated betas of this kind, Lewellen and Nagel (2006) concluded that time variation in beta
is insufficient to explain certain asset pricing anomalies. Given the large variation we observed in the
systematic risk of individual companies, it could be interesting to revisit this question.

To illustrate the degree of variation in beta, Figure 5 presents the time series of conditional betas for
four selected stocks during the second half of 2008. An interesting example is Williams Companies
(WMB), which moved from the lower 10% to the upper 10% in the fall of 2008. The example of SNV
shows how some financial companies became relatively more risky as the financial crisis approached
in the early fall of 2008. Finally, we included UTX and EK to show that the betas of some companies
are relatively stable.

5.3. Beta Comparison

An advantage of the realized beta model is that it readily produces the time series of the betas, as we
illustrated in Figure 5. Similar quantities can be obtained by multivariate GARCH-type models that do
not utilize realized measures. A prime example of such a model is the dynamic conditional correlation
(DCC) model by Engle (2002a).
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Figure 5. Quantile time series plot of conditional realized GARCH betas for the period June 2008 to
December 2008
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790 P. R. HANSEN, A. LUNDE AND V. VOEV

In this section we compare the betas produced by the realized beta GARCH model with those
produced by the DCC model, as well as a static model that has ˇ constant. The comparison is done
using two methods: first, we use a regression-based comparison that was proposed by Engle (2012).
Second, we compare the betas using a beta hedging-tracking exercise.

The regression-based comparison is based on the auxiliary variables

ZRBG
i;t D

ǑRBG
i;t r0;t ; ZDCC

i;t D
ǑDCC
i;t r0;t ; ZCAPM

i;t D Ǒir0;t

and the estimated regression model

rit D ˛ C ı
RBG
i ZRBG

i;t C ı
DCC
i ZDCC

i;t C ı
CAPM
i ZCAPM

i;t C "i;t (13)

for each of the assets. A specification that yields an ideal time series for ˇit would correspond to its
ı-coefficient being one, while the two other ı-coefficients would be zero. Engle (2012) compared the
beta of a DCC model to a constant beta using in-sample regressions, and found strong support for the
DCC specification. In our comparison, we add the third time series of betas (that of the realized beta
GARCH model) to the comparison, and make the regression-based comparison using out-of-sample
data. This is done as follows: First, we estimated each of the three models using data up until the end of
2007. The estimated models are then used to compute betas out-of-sample, from which we construct
the auxiliary variables. For the static model, Ǒi is simply obtained by regressing individual returns on
the market return and a constant over the in-sample period.

We estimate equation (13) by least squares and test the following three hypotheses:

HRBG W ı
RBG
i D 1; ıDCC

i D ıCAPM
i D 0;

HDCC W ı
DCC
i D 1; ıRBG

i D ıCAPM
i D 0;

HCAPM W ı
CAPM
i D 1; ıRBG

i D ıDCC
i D 0

using robust inference in the sense of White (1980). In addition, we make a direct comparison between
the realized beta GARCH model and the DCC model by excluding ZCAPM

i;t from the regression in
equation (13) and test the hypotheses

H 0RBG W ı
DCC
i D 0 and H 0DCC W ı

RBG
i D 0

Our second comparison of the betas is based on a beta hedging-tracking exercise. Here we
compute the time series,

�
rit �Z

RBG
i;t

�
;
�
rit �Z

DCC
i;t

�
and

�
rit �Z

CAPM
i;t

�
for each asset, and com-

pute their sample variances. In this exercise we seek the one with the smallest variance. For this
multiple-comparisons problem we apply the model confidence set (MCS) methodology of Hansen
et al. (2011), to identify a specification whose variance is significantly smaller than that of the
competitors.

The out-of-sample comparison is based on an extended sample that spans 4 years from the beginning
of 2008 to the end of 2011. Our results are based on the 450 assets for which we had data for the full
sample period (in-sample as well as out-of-sample).

The results are summarized in Table III. Panels A and B show results from the regression-based
comparisons, and panel C shows MCS results from the beta hedging-tracking exercise. Panel A
presents the average estimated ı-coefficients, from the regression (13), and four subset regressions,
also with statistics that summarize the cross-sectional variation in these estimates, across the 450
assets. The beta deduced from the realized beta model has, on average, the largest weight. In the

Copyright © 2014 John Wiley & Sons, Ltd. J. Appl. Econ. 29: 774–799 (2014)
DOI: 10.1002/jae
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REALIZED BETA GARCH 791

Table III. Beta comparison

Full model ExcludingZCAPM
i;t Single

ıRBG
i ıDCC

i ıCAPM
i ıRBG

i ıDCC
i ıRBG

i ıDCC
i ıCAPM

i

Panel A: Summary of parameter estimates
Mean 0.640 0.067 0.318 0.884 0.183 1.050 1.128 1.126
SD 0.517 0.335 0.498 0.363 0.336 0.220 0.134 0.408
1% �0.502 �0.781 �0.950 0.104 �0.574 0.640 0.785 0.453
5% �0.093 �0.514 �0.518 0.285 �0.367 0.731 0.924 0.541
Median 0.609 0.087 0.320 0.845 0.177 1.014 1.112 1.070
95% 1.655 0.603 1.111 1.531 0.779 1.477 1.366 1.873
99% 1.980 0.828 1.555 1.882 1.037 1.729 1.492 2.214

Panel B: Rejection frequencies
HRBG: 0.72 HDCC: 0.94 HCAPM: 0.92 H 0RBG: 0.40 H 0DCC: 0.95

Panel C: Frequency in model confidence set
RBG: 0.88 DCC: 0.53 CAPM: 0.45

Note: Comparisons of the betas of the RBG, DCC and CAPM models. Panel A presents summary
statistics of the estimated regression coefficients in equation (13) and four submodels (one that excludes
ZCAPM
i;t and the three models that only include one of three regressors. The rejection frequencies for

five hypotheses are given in panel B, and panel C reports the frequency (across assets) that each of the
models are included in the MCS in the beta hedging exercise.

regressions using the three auxiliary variables, the DCC model gets little weight. In fact, the aver-
age coefficient is much smaller than that of the CAPM model, even though the DCC is better than
the CAPM in a direct comparison (see Engle, 2012). This is explained by a crowding-out effect that
occurs when the RBG regressor is included in the analysis. The middle part of panel A has the esti-
mates from the direct comparison of the RBG and DCC betas, which also points to the RBG betas
being superior to those of the DCC. This is confirmed in the results for the hypotheses tests given in
panel B. The hypotheses that the DCC or the CAPM produce ideal betas,HDCC andHCAPM, are almost
always rejected. The hypothesis that the RBG model produces ideal betas, HRBG, is also rejected in
the majority of cases, but cannot be rejected for 28% of the assets. In the direct comparison between
RBG and DCC we reject the H 0DCC for the vast majority of assets; however, H 0RBG cannot be rejected
for 60% of the assets. Thus for 60% of the assets there is no significant evidence that ǑDCC

i;t r0;t can

explain variation in ri;t , that is not already explained by ǑRBG
i;t r0;t .

The general conclusion is further corroborated by the results in panel C. Here we report the fre-
quency (across assets) by which the tracking error associated with each of the betas is in 90% MCS.
The MCS is constructed such that it contains the competitor with the smallest tracking error with a
probability no less than 90%. The DCC is found to be significantly inferior for 47% of the assets, and
the CAPM is significantly inferior for 55% of the assets. Again, the RBG does better, and there are
only 12% of the assets for which the RBG is found to be significantly inferior, which is only slightly
more than can be attributed to Type 1 error.

5.4. Residual Correlations and Test for Constant Correlations

The realized beta GARCH model implies that the correlation between the individual studentized
returns, ´it and ´jt , is time varying. Recall the decomposition

´i;t D �i;t´0;t C ´i;t � �i;t´0;t D �i;t´0;t C
q
1 � �2i;twi;t

Copyright © 2014 John Wiley & Sons, Ltd. J. Appl. Econ. 29: 774–799 (2014)
DOI: 10.1002/jae
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792 P. R. HANSEN, A. LUNDE AND V. VOEV

where wi;t and ´0;t are uncorrelated, both have mean zero and unit variance, and in the likelihood
analysis we modeled both as standard Gaussian random variables. It follows that

corr.´i;t ; ´j;t / D �i;t�j;t C

r�
1 � �2i;t

� �
1 � �2j;t

�
E
�
wi;twj;t

�
which is time varying unless E

�
wi;twj;t

�
behaves in a rather unlikely way that offsets the variation

in �i;t and �j;t . We have not stated explicit assumptions about the correlation, E
�
wi;twj;t

�
, which

induces additional dependence between ´i;t and ´j;t , beyond that inherited from their correlations
with the market return. This additional channel for dependence is ignored in our estimation (in order
to make the estimation of large systems feasible). A non-zero correlation between wi;t and wj;t is
evidence that the realized beta GARCH model does not fully characterize the complete system, so that
the estimated model will need to be enhanced to capture such effects. It would also suggest that the
estimation is inefficient to some extent, albeit this is to be expected with a relatively simple estimation
procedure in a highly complex model.

In this section we study the magnitude of E
�
wi;twj;t

�
and the potential evidence of time variation

in this correlation. Since our model implies time variation in the correlation between ´i;t and ´j;t we
shall evaluate the empirical evidence of this.

First, we consider a test for constant correlation that is based on the general theory by
Nyblom (1989). This is the underlying framework of several tests for parameter constancy, includ-
ing that of Hansen (1992) (linear regression models) and that of Hansen and Johansen (1999)
(cointegration VAR).

Consider a bivariate process .xt ; yt / of studentized variables, E.xt / D E.yt / D 0 and E
�
x2t
�
D

E
�
y2t
�
D 1; so that the correlation is given by

�t D E .xtyt /

We are to construct tests for constant correlation and zero correlation. The maintained hypothesis is
that the partial sum

WT .u/ � T
� 1
2

buT cX
sD1

.xsys � �s/ ; u 2 Œ0; 1


satisfies a functional central limit theorem, so that WT .u/ ) �WB.u/, where B.u/ is a standard
Brownian motion and �2W is the long-run variance of xtyt � �t .

Under the null hypothesis, H0 W �t D � (constant correlation) it follows that

NBc D
T �1

PT
tD1

�
T �1=2

Pt
sD1 .xsys � N�/

�2
O�2W

d
!

Z 1

0

Bb.u/
2du

where Bb.u/ D B.u/ � uB.1/ is a standard Brownian bridge, N� D T �1
PT
tD1 xtyt and O�2W is some

consistent estimator of �2W . Under the null hypothesis H0 W �t D 0 (zero correlation) we have

NB0 D
T �1

PT
tD1

�
T �1=2

Pt
sD1 xsys

�2
O�2W

d
!

Z 1

0

B.u/2du

where O�2W
p
! �2W . In the absence of serial dependence we can use the estimator O�2W D

T �1
PT
tD1 .xtyt � N�/

2, which is consistent for �2W under both null hypotheses. The 5% critical values
of these limit distributions are 0.462 and 1.656, respectively (see Nyblom, 1989).

Copyright © 2014 John Wiley & Sons, Ltd. J. Appl. Econ. 29: 774–799 (2014)
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REALIZED BETA GARCH 793

Table IV. Sector statistics

Sector Company counts Min. beta Median Max beta

Energy 46 0.299 (0.174) 1.009 (0.145) 2.396 (0.510)
Materials 37 0.382 (0.104) 0.873 (0.117) 2.347 (0.836)
Industrials 63 0.264 (0.133) 0.931 (0.144) 2.293 (0.427)
Consumer discretionary 103 0.163 (0.156) 0.912 (0.136) 2.395 (0.664)
Consumer staples 46 0.336 (0.127) 0.970 (0.135) 2.188 (0.422)
Healthcare 64 0.358 (0.147) 1.072 (0.158) 2.586 (0.632)
Financials 101 0.309 (0.127) 1.037 (0.141) 2.633 (0.665)
Information technology 86 0.335 (0.156) 0.944 (0.145) 2.496 (0.734)
Telecommunication services 9 0.727 (0.166) 1.082 (0.186) 1.620 (0.307)
Utilities 40 0.284 (0.140) 0.988 (0.175) 2.332 (0.579)

Note: The table gives summary statistics of the sectoral aggregation. The third to fifth columns give the
time series average of the minimum, median and maximum beta for each sector. Standard deviations are
given in parentheses.

In our application we shall apply the test for constant correlation to ´i;t´j;t and wi;twj;t , and the
test for zero correlation to wi;twj;t .

With 594 stocks in our cross-section there are 176,121 distinct correlation series to consider. In
order to make the presentation manageable, we aggregate the results by industrial segmentation, based
on the Global Industry Classification Standard (GICS). The 10 sectors are listed in Table IV along
with the number of companies and summary statistics for their betas within each of the sectors.

Next we turn to the constancy of correlations within and across sectors. These results are presented
in Tables V–VII. Table V gives the sample average of the unconditional correlations for residuals
sorted by GICS. The upper panel is for the studentized returns, Ó i;t and Ój;t , and serves as a bench-
mark measure. It is interesting to compare these correlations with those in the lower panel, which are
based on Owi;t and Owj;t . The differences reveal how much of the correlations between individual stocks
can be attributed to the market factor. The average correlation across Ow-variables is small for stocks
in different sectors, which suggests that the market may account for much of these correlations. How-
ever, for stocks within the same sector there is a substantial amount of unexplained correlation, as is
evident from the diagonal entries in the lower panel. Thus an additional factor (beyond the market fac-
tor) is needed to explain the correlation structure of stocks within the same sector. For now we will
simply investigate some statistical properties of the residual co-variation and leave the modeling for
future work.

In Table VI we apply the NBc test for constant correlation to our residual series. We report the
rejection frequencies for a 5% significance level. In the upper panel we present the frequencies for
the product of the studentized returns, Ó i;t Ój;t . For example, in the case of the 46 energy companies
there are 1035 tests and the null hypothesis of constant correlation is rejected for almost 65% of these
test. Once we account for the market factor, and test the hypothesis of constant correlation for the
idiosyncratic studentized returns, wit , the rejection frequencies are much smaller, as can be seen from
the lower panel of Table VI. This is especially true for assets in different sectors. For stocks within the
same sector there continues to be substantial evidence of non-constant correlations, and the same is
the case when one (or both) of the assets belongs to the energy sector.

One key message to take away from Table VI is that the evidence of time-varying correlations across
sectors is greatly reduced by accounting for their associations with market returns. Within sectors there
is substantial residual time variation and, evidently, for some sectors there is a need for additional
factors if a larger fraction of the time variation is to be accounted for.

Table VII presents the tests for zero correlation. The table reports the rejection frequencies for the
NB0 test applied to the Owi;t Owj;t series. Given the results in Table VI, it is not surprising that the test is
frequently rejected for assets belonging in the same sector. Across sectors the zero correlation is also
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Ó
i
;t

an
d
Ó
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frequently rejected. By introducing sector-specific factors it may be possible to explain the correlation
structure of stocks within the same sector. Since additional factors would change the definition of the
residual studentized returns, it is also plausible that sector specific factors could mitigate the residual
correlation we find for assets in different sectors. We shall pursue this issue in future research.

6. CONCLUSION

In this paper we propose a multivariate GARCH model that utilizes realized measures of volatility
and correlation, and entails a complete modeling of their dynamic properties. The model builds on a
self-contained system of equations that link realized measures to the appropriate population quantities
of volatility. The structure implies a dynamic model of the conditional betas that are popular measures
of risk in finance. The proposed framework allows for leverage effects and spillover effects between
the assets and the market volatility. In this respect the model combines the flexibility of the GARCH
modeling framework with the statistical precision in volatility measurement resulting from the use of
high-frequency data. Importantly, the realized beta GARCH model has a hierarchical structure that
makes it easy to apply to a vast number of assets.

Our empirical study revealed some interesting features of the cross-sectional variation of the condi-
tional betas, as well as their time series variation. In particular, we find that the betas exhibit substantial
variation at a daily frequency—variation that is largely concealed in the rolling-window estimates of
ˇ that one can obtain with regression methods using daily returns. In our empirical analysis we also
found that the realized beta GARCH model explains a great deal of the time variation in the correlation
structure, and in a comparison of the dynamic betas of the model, with betas of alternative models, we
found the betas of the realized beta GARCH to have be best empirical properties, on average.

Despite the advances brought by the realized beta GARCH model, it does not capture all of the
dynamics of the large system. This was evident from some Nyblom tests, which revealed variation in
the correlation structure that could be be explained by the underlying market factor. This was particu-
larly the case for correlations between assets that belong to the same sector. For this reason, it will be
interesting to consider a generalized structure where additional sector-specific correlation factors are
used. We shall pursue this generalization in future research.
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