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HIGHLIGHTS

o We consider a multivariate time series given from a discrete Markov chain.

e Its martingale decomposition is derived, with all terms given in closed form.

e The decomposition is analogous to the Beveridge-Nelson decomposition.

e Decomposition has three terms: a persistent, a transitory, and a deterministic trend.
e The autocovariance structure across all terms is fully characterized.
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1. Introduction

We consider a d-dimensional time series, {X;}, whose incre-
ments, AX; = X; — X;_1, follow a homogeneous ergodic Markov
chain with a countable state space. Thus, X; = Xp + Z;zl AX;,
which makes X; a (possibly non-stationary) Markov chain on a
countable state space. We consider, E(X;.,|#;), where # = o (X;,
X¢_1, ...),is the natural filtration. The limit, as h — oo, is particu-
larly interesting, because it leads to a martingale decomposition,
Xe =Y + pe + U,
where u; is a linear deterministic trend, {Y;, #;} is a martingale
with Yy = limp_, oo EXen — ten| F¢), and U, is a bounded station-
ary process. We derive closed-form expressions for all terms in the
representation of X;.
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The martingale decomposition of finite Markov chains is akin
to the Beveridge-Nelson decomposition for ARIMA processes, see
Beveridge and Nelson (1981),' and the Granger representation for
vector autoregressive processes, see Johansen (1991). The decom-
position has many applications, as the long-run properties of X; are
governed by the persistent component, Y;, while U; characterizes
the transitory component of X;. In macro-econometrics Y; and U;
are often called “trend” and “cycle”, respectively, with Y; being in-
terpreted as the long run growth while U, defines the fluctuations
around the growth path, see, e.g. Low and Anderson (2008). A mar-
tingale decomposition of a stochastic discount process can be used
to disentangle economic components with long term and short
run impact on asset valuation, see Hansen (2012). For the broader

1 The result, known as Beveridge-Nelson decomposition, appeared earlier in the
statistics literature, e.g. Fuller (1976, Theorem 8.5.1). See Phillips and Solo (1992)
for further discussion. The martingale decomposition is also key for the central limit
theorem for stationary processes by Gordin (1969).
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concept of signal extraction of the “trend”, see Harvey and Koop-
man (2002).

In the context with high-frequency financial data (which often
are confined to a grid), Y; and U; may be labelled the efficient
price and market microstructure noise, respectively. One could
use the decomposition to estimate the quadratic variation of the
latent efficient price Y;, as in Large (2011) and Hansen and Horel
(2009), and the framework could be adapted to study market
information share, see e.g. Hasbrouck (1995). Markov processes
are often used to approximate autoregressive processes in dynamic
optimization problems, see Tauchen (1986) and Adda and Cooper
(2000), and the decomposition could be used to compare the long-
run properties of the approximating Markov process with those of
the autoregressive process.

The paper is organized as follows: We establish an expression
for the filtered process within the Markov chain framework, in Sec-
tion 2, which leads to the martingale decomposition. Concluding
remarks with discussion of various extensions are given in Sec-
tion 3, and all proofs are given in the Appendix.

2. Theoretical framework

In this section we show how the observed process, Xg, Xi, ...,
Xy, can be filtered in a Markov chain framework, using the natural
filtration £ = o (X;, X;_1, ...). This leads to a martingale decom-
position for X; that is useful for a number of things.

Initially we seek the filtered price, E(X;4|%:), and we use the
limit, as h — oo, to define the process,

Yy = lim EXeqn — tenl Fe),
h—o00

where u; = tu with u = E(AX;). We will show that {Y;, %} is
a martingale, in fact, Y; is the martingale component of X; that,
in turn, reveals a martingale representation theorem for finite
Markov processes.

Note that the one step increments of E(X; 1, — i¢4n|Ft) are, in
general, autocorrelated at all order (including those lower than h),
however all autocorrelations vanish as h — oo and the martingale
property of Y emerges. This filtering argument can be applied to

any I(1) process for which E(AX; | %) RS E(AX;) ash — o0, and
this is the basic principle that Beveridge and Nelson (1981) used to
extract the (stochastic) trend component of ARIMA processes.

2.1. Notation and assumptions

In this section we review the Markov terminology and present
our notation that largely follows that in Brémaud (1999, Chapter 6).
The following assumption is the only assumption we need to make.

Assumption 1. The increments {AX;}{_; are ergodic and dis-
tributed as a homogeneous Markov chain of order k < o0, with
S < oo states.

The assumption that S is finite can be dispensed with, which we
detail in Section 3. For now we will assume S to be finite because
it greatly simplifies the exposition. The transition matrix for price
increments is denoted by P. For a Markov chain of order k with S
basic states, P will be an S¥ x S* matrix. We use 7 € RS to denote
the stationary distribution associated with P, which is uniquely
defined by w'P = 7'. The fundamental matrix is defined by?

Z=(0—-P+171,
where IT = (7’ is a square matrixand ¢t = (1, ..., 1)’,(so all rows

of IT are simply 7"). We use e, to denote the r-th unit vector, so
that e.A is the r-th row of a matrix A of proper dimensions.

2 The matrix, I — P + [T, is invertible since the largest eigenvalue of P — IT is less
than one under Assumption 1.

Let {x1, ..., xs} be the support for AX;, with x; € RY. We will
index the possible realizations for the k-tuple, AX; = (AXi—k+1,
..., AX),byxs, s=1,..., Sk which includes all the perturba-
tions, (X, ..., Xy), i1,..., 0k = 1, ..., S. The transition matrix, P,
is given by

Pr,s = PI‘(AX[+1 = Xs|Axt = Xr)-

This matrix will be sparse when k > 1, because at most S transi-
tions from any state have non-zero probability, regardless of the
order of the Markov chain.

For notational reasons it is convenient to introduce the se-
quence {s;} that is defined by AX; = X, so thats; denotes the ob-

served state at time t. We also define the matrix f € RS“*d whose
s-th row, denoted f; = e.f, is the realization of AX’ in state s. It
follows that AX; = f’e,, and that the expected value of the incre-
ments is given by i = E(AX;) = f'm € R%.

The auxiliary vector process, e, , is such that E(e;, , | #:) = P'eg,,
so that e, can be expressed as a vector autoregressive process of
order one with martingale difference innovations, see e.g. Hamil-
ton (1994, p. 679).

2.2. Markov chain Filtering

The filtered process E(X;,n|#:), is simple to compute in the
Markov setting, because E(X¢1h|F:) = EXe1n|AX:) and Xeyp =

Xe+ Y0, AXeyy with E(AX/|AX: = X,) = Y50, Py s = €/ Pf.
More generally we have E(AX/,,|AX,) = e;tP"f, which shows
that
h .

EX/,nlAX) =X/ + ¢, Y Pf.

=1
After subtracting the deterministic trend, j4¢1, we let h — oo and
define

Y = lim E(Xen — peynl Fo),
h—o00

which we label the filtered process of X;. The process, Y; is well
defined and adapted to the filtration #;. We are now ready to for-
mulate our main result.

Theorem 1. The process and {Y;, ¥} is a martingale with initial
value, Yo = Xo +f'(Z' — Dey, and its increments are given by AY] =
e, Zf — e;,_, PZf. Moreover, we have

Xe =Y+ pue + U, (1)

where U] = e;[ (I — Z)f is a bounded, stationary, and ergodic process
with mean zero.

All terms of the expression are given in closed-form, analogous
to the Granger representation theorem by Hansen (2005).

It can be shown that AY; is a Markov process with S¥*1 possible
states values. Analogous to P and f, let Q and g denote the transi-
tion matrix for AY; and its matrix of state values, respectively. The
martingale property dictates that Qg = 0 € RS““'x4 Note that
AY; is typically conditionally heterogeneous, as Q is not a matrix
of rank one, which would be the structure corresponding to the
case where AY; is independent and identically distributed.

The autocovariance structure of the terms in the martingale
decomposition is stated next.

Theorem 2. We have var(AY;) = f'Z'(A; — P'A,P)Zf where
A, = diag(my, ..., ) and
cov(Us, Uryy) = f'(I = 2)' APV = 2)f

= f'Z'P' A, P(PY — M) Zf,
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and the cross correlations are
coV(AYr, Upyj) = f'Z/ (= Ay + P A P)PITZF,  forj >0,
and cov(AY;, Usyj) = 0forj < 0.

The Theorem shows that the stationary component, Uy, is auto-
correlated and, in general, correlated with current and past (but not
future) increments, AY;, of the martingale. In the context of finan-
cial high-frequency data, where U, is labelled market microstruc-
ture noise, these features are referred to as serially dependent
and endogenous noise, that are common empirical characteristics
of high-frequency data, see Hansen and Lunde (2006). Let A, de-
note the second-largest eigenvalue in absolute value of P. Since,
|PP — IT|| = O(|A,) and |A5| < 1 under Assumption 1, it follows
that the autocovariances of U; decay to zero at an exponential rate.

A corollary to Theorem 2 is that the following.

Corollary 1. The variance of the observed increments, var(AX;) =
f' (A, — w’)f equals

var(AY;) + 2var(U;) — cov(U;_1, Uy) — cov(U, Ui_q)
+ cov(AY:, Ur) + cov(Us, AYy)
=f'Z'(I—-P) A, —P)Zf.

3. Concluding remarks and extensions

The martingale decomposition of X; has several applications,
as is the case for the Beveridge-Nelson decomposition for ARIMA
processes. In the context of macro time series Y; and U; might be
labelled the (stochastic) trend and cycle, respectively. In the con-
text of financial high frequency prices, Y; and U; could be labelled
the efficient prices and market microstructure noise, respectively.
In that context, both Y; and U; are of separate interest. Moreover,
extracting the martingale component, Y;, offers a motivation for
the Markov chain-based estimator of the quadratic variation as
in Hansen and Horel (2009). Their estimator is deduced from the
long-run variance of X;, that facilitates a central limit theory and
readily available standard errors.

To conclude, we will discuss extensions of the martingale
decomposition to accommodate the cases with an infinite number
of states (countable), jumps, and inhomogeneous processes.

Suppose that the number of state values for AX; is countable in-
finite. Then the number of Markov states for A X; is countable in-
finite, and the Markov process can be characterized by P, 5, 1,5 =
1,2, .... The concept of ergodicity is well defined, and entails a
unique stationary distribution, s, that satisfies 7y, = Zf; Py 57,
With [P?], s = Zjozol P, jP; s and higher moments defined similarly,
we can define

h
Zrs=1ls+ hango Xl:([P}]rs — 75),
J=

that are well defined provided that the Markov chain is ergodic.
It can now be verified that the expressions in Theorems 1 and 2
continue to be applicable to this case.

In financial time series the increments, AX;, are often concen-
trated about zero, with occasional large changes that are labelled
as jumps, see e.g. Huang and Tauchen (2005) and Li (2013). Be-
cause jumps are prevalent in high-frequency financial data, the
modelling of these data often entails a jump component. One can
adapt the martingale decomposition (1) to include a jump compo-
nent, J;. This requires a procedure for classifying large increments
as jumps and one can then proceed by removing these jumps,
e.g. using methods similar to those proposed in Mancini (2009) or

Andersen et al. (2012), and then model the remaining returns by
the Markov chain methods, to arrive at

Xe =Y +Je + e + U,

where J; = Jr 1+ AXej, e = pe—1+p(1=6;), Ut/ =( _(St)e;[ (I-
Z)f, with §; being the indicator for the jumps.

The case with an inhomogeneous Markov chain is theoreti-
cally straightforward provided that the transition matrix, P, s(t) =
Pr(AX; = x|AX:—1 = X,), satisfies the ergodicity conditions
for all t. From the time-varying transition matrix, P(t), one can de-
duce the increments AY; and Ay, as well as Uy, that all depend
on P(t). A decomposition arises by piecing the terms together, i.e.
Y, = Yo+ Z;:l AY;, and again Y; can be verified to be a martingale,
and similarly for other terms. A challenge to implementing this in
practice will be to estimate P(t) with a suitable degree of accuracy.
This may be achieved by assuming that P is locally homogeneous
(piecewise constant), or by imposing a parsimonious structure for
the dynamics of P(t), similar to that in the models by Hausman
et al. (1992) and Russell and Engle (2005), that can induce an inho-
mogeneous Markov chain for high-frequency returns.
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Appendix. Proofs

Lemma A.1. Suppose that Assumption 1 holds.
(i) P—1Yy =P —1I,
(i) limpoo Y0 (P — ITY =Z — I, whereZ = (I — P+ IT)"",
(iii) Zt=t, 7’"Z=n',andPZ =ZP =7 — I + 11,
(ivyZ—I=®P-1)Z.
Parts of Lemma A.1 are well known, for instance parts (i) and (ii)

are in Brémaud (1999, Chapter 6). For the sake of completeness, we
include the (short) proofs of all four parts of the lemma.

Proof. We prove (i) by induction. The identity is obvious for j = 1.
Now suppose that the identity holds for j. Then

(P— Myt = P - mP - M)
=P _pgP+m?—pa =P -1,
where the last identity follows from ITP) = [7> = PIT = I1.

(ii) Since the chain is ergodic we have |P — IT|| < 1, so that P"
converges to [T with |P" — IT| = 0(|A,|"), where 15 is the second
largest eigenvalue of P. It follows that Z;’il P —1) = Zf:ol(P —
[Ty is absolutely convergent with ) %, (P—ITY = 3 (P—IT) —
I=I—P-M)'—1=Z-1

(ili) Pt = vand 7'P = n’ foranyj € N; and [Tt = ¢ and
7'l = 7', so that have (P — IT)t = n/(P) — IT) = 0. The first
two results follow fromZ = I + Zjoil(Pf — IT).Next,PZ = ZP =

P+ 2 (P — IT) and

P+Y (P =) =P+ (P =) —P+11

j=1 j=0

=Y P -M+M0=Z—1+1.
j=1

Finally, the last result follows from (Z — 1) = (I —Z7YZ =
I—1+P—MZ={P—-MZ. O
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Proof of Theorem 1. We have E(AX/,,|AX; = X;,) = €] P"f.So
with AX; = X,, we have

h
Eetn — penlF) = Xe — e+ Y E(AXeyj — pulF)
j=1

h
= X; — It +f/Z(P] —H),est,

j=1

where the last term is such that €] Z]’f':] (P —II)f — e(Z—Df as
h — oo by Lemma A.1(ii). Hence,

Y: = hlLIT;o EKein — fepnl Fo) = Xe — pe + ' (Z = D'eg,,

so that Yo = Xo + f'(Z — I)’es, and the increments are given by
AY] = AX{ — ' + €, (Z—Df —¢,_ (Z—Df
=e Zf —e, (Z+1—Df =e Zf —e  PIf,

St—1 S

where we used Lemma A.1(iii).
This establishes the decomposition, X; = Y; + u; + U, where
U = e; (I — Z)f. Since U is a simple function of AX it follows
that U; is a stationary, ergodic, and bounded process. E(U;) = 0
follows from E(U}) = > mse,(I — Z)f = (n' — n’Z)f = 0, where
we used Lemma A.1(iii).

Moreover, {Y;, #;} is a martingale, because Y; € #; and

> Prsejzf — e/ Pzf
N

= e.PZf — e,PZf =0,

E(eZf — e.PZf|AXi_1 = X;)

foranyr = 1,...,S* where r and s are short for s;,_; and s;, re-
spectively (defined by AX;_1 =X, and AX; =Xx;). O

In the proof of Theorem 2 we use the following identities

anP,,sere’r = Zn,Pr,sese; = A,, and
s s (A1)

Z”r[lﬂ]r,ser@; = Anpj»
r,s
that are easily verified.

Proof of Theorem 2. For the variance of the martingale incre-
ments we have

E(AY:AY)) = E[(f'Z'es, —f’Z’P/estfl)(e;[Zf —é

L PZ)],
=Y P of'Z (es — Pec) (e, — €,P)Zf

= Z 7P, of'Z' (ese, — ese.P — P'ee, + P'e,e.P)Zf
r,s

— F'Z(Ay — P'ALP — P' AP + P A, P)Zf

= ['Z/(Ay — P ALY,

where we used (A.1) in the second last equality.
Concerning the stationary component of the decomposition we
have forj > 0 that

E(U:U/;) = Elf'd — Z)/esteéw(l —2)f]
=Y w P ' —2) eI — 2)f
= f'(I = 2) AP’ — 2)f
= f'Z'(IT — P)' A,P'(IT — P)Zf
= f'Z'P' A P(P — I)Zf,

where we used Lemma A.1(iv) in the second last equality.

Finally, for the cross covariance we first note that,

anpr,s[Pj]s,vese; = Zns[Pj]s,vese; = Arrpja
)

r,s,v
§ : j ’_ § : j+1 ;o j4+1

ﬂrPr,s[P]]s,verev = ”r[P] ]r,uerev = AnP] P
r,s,v r,s,v

where the first identities in the two equations follow by ) . 7. Pr
= msand Y P, s[P'];, = [P'T], ,, respectively, and the last equal-
ities both follow from the last variant of (A.1). So for j > 0 we have

E(AY:U)) = El(e, 2f — e, PZf)'e; (I —Z)f]
=Y 7P [P)s.of 7 (e — Pen)el,(IT — P)Zf

= f'Z'[AP'(IT = P) — P' AP (IT — P)|Zf
= fZ'[nn’ — AP — ' + P AP Zf
= f'Z'(— Ay + P' A, P)PTZf.

That E(AY, U] 5 =0 forj < 0 can be verified similarly. However,
this is not required because the zero covariances are a simple con-
sequence of martingale property of Y; that was established in the
proof of Theorem 1. O

Proof of Corollary 1. By substituting the expressions from Theo-
rem 2 and using cov(AY;, U;_1) = 0, one finds that the expression
in Corollary 1 equals f'Z'AZf, where

A= (A; —P' AP)+2P'AP(I —IT) —P'A,P(P — I)
— (P —I)'P' AP+ (—Ay + P A, P)P
+P'(—=A; + P ALP)
= Ay +P'AP —2nn' +nn’ +an’ — AP —P' A,
= (I —-P)A,(I-P),

which proves the equality in the corollary. That f'Z'AZf = f'(A, —
mr’)f follows from

(I—PYA,(I—P)=(I—P+ A, —P+1I)—n7
=U—-P+I(Ay —nr')I —P+ 1),

which equals (Z71) (A, — w7")Z~". This completes the proof. O
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