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1 Introduction

This paper introduces the Markov chain estimator of multivariate volatility. Our
analysis builds on the results by [19] who proposed the univariate Markov chain
estimator. The multivariate extension poses new challenges related to asynchronicity
and the potential need to enforce the estimator to be positive semidefinite.

The availability of high-frequency financial data has made it possible to estimate
volatility over relatively short periods of time, such as an hour or a day. The main
obstacle in obtaining precise estimators is the fact that high-frequency returns do not
conform with conventional no-arbitrage models. The reason is that there is a great deal
of autocorrelation in tick-by-tick returns. The apparent contradiction can be explained
by market microstructure noise, which gives rise to the notion that the observed price
is a noisy measure of the efficient price. In this paper, we introduce a multivariate
volatility estimator that is built on the theory of Markov chains. The estimator utilizes
the discreteness of high-frequency data, and the framework implicitly permits a high
degree of serial dependence in the noise as well as dependence between the efficient
price and the noise.

The use of high-frequency data for volatility estimation has been very active over
the past two decades, since [3] used the realized variance to evaluate GARCH models.
The realized variance is simply the sum of squared intraday returns, and its properties
were detailed in [11], for the case where the semimartingale is observed without noise,
which was extended to the multivariate context in [12]. The noise in high-frequency
returns motivated a number of robust estimators, including the two-scale estimator
by [33], the realized kernels by [8], and the pre-average estimator by [25]. Empirical
features of the market microstructure noise were detailed in [22], which documented
that the noise is both serially dependent and endogenous, in the sense that there is
dependence between the underlying semimartingale and the noise. These empirical
features motivated the development of the multivariate realized kernel in [9], which
is an estimator that permits the noise to have both of these features.

An attractive feature of the Markov framework is that serially dependent and
endogenous noise is a natural part of the framework. Moreover, the Markov chain
estimator is simple to compute and the same is the case for the estimator of its
asymptotic variance. It only takes basic matrix operations to compute the estimator
and its confidence intervals.

To illustrate our estimator consider the case with two assets. The bivariate
sequence of high-frequency returns is denoted by {∆Xt }ni=1, and we define the S × 2
matrix x,where S is the number of states for ∆Xt , and each row of x corresponds to a
possible realization of ∆Xt . For instance, the s-th row of x may equal xs,· = (2,−1)
that is the state where the first asset increased by 2 units, while the second asset went
down by one unit. The S × S transition matrix, P, for a Markov chain of order k = 1
is given by

Pr,s = Pr
(
∆Xt+1 = xs,·|∆Xt = xr,·

)
, r, s = 1, . . . , S,
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and its stationary distribution, π = (π1, . . . ,πS)
′, is characterized by π ′P = π ′.

We define Λπ = diag(π1, . . . ,πS) and the fundamental matrix Z = (I − P + Π)−1

where Π = ιπ ′ with ι = (1, . . . , 1)′ ∈ RS. From the maximum likelihood estimator
of P we deduced estimates of π and Z , denoted π̂ and Ẑ , see Sect. 3 for details. The
multivariate Markov chain estimator is given by

MC = nD−1
{
x′(Λπ̂ Ẑ + Ẑ ′Λπ̂ − π̂ π̂ ′ − Λπ̂ )x

}
D−1,

where D = diag (δ1, δ2) and δ2
j = n−1 ∑n

t=1 X
2
j,t is the sample average of the squared

price of the j-th asset, j = 1, 2. The expression inside the curly brackets is the
estimator of the long-run variance of a finite Markov chain, see [20]. The scaling
involving D, is a transformation needed for the estimator to be an estimator of
volatility of logarithmic prices. The scaling with the sample size, n, relates to the
local-to-zero asymptotic scheme that arises under in-fill asymptotics.

Hansen and Horel [19] showed that filtering can resolve the problems caused
by market microstructure noise under weak assumptions that essentially amounts to
the noise process to be ergodic with finite first moment. This result is theoretical in
nature, because the ideal filter requires knowledge about the data generating process.
In order to turn the theoretical filtering result into an actual estimator, one needs to
adopt a statistical model, and our approach is to model the increments of the process
with a Markov chain model, which is a natural starting point given the discrete nature
of high-frequency data.

The discreteness of financial data is a product of the so-called tick size, which
defines the coarseness of the grid that prices are confined to. For example, the tick-
size is currently 1 cent for most of the stocks that are listed on the New York Stock
Exchange. The implication is that all transaction and quoted prices are in whole
cents. The Markov estimator can also be applied to time series that do not live on a
grid, by forcing the process onto a grid. While this will introduce rounding error, it
will not affect the long-run variance of the process. Delattre and Jacod [16] studied
the effect of rounding on realized variances for a standard Brownian motion, and
[28] extended this analysis to log-normal diffusions.

The present paper adds to a growing literature on volatility estimation using high-
frequency data, dating back to [34, 35]. Well known estimators include the realized
variance, see [5, 8]; the two-scale and multi-scale estimators, see [32, 33]; the real-
ized kernels, see [8, 9]. The finite sample properties of these estimators are analyzed
in [6, 7], and the close relation between multi-scale estimators and realized kernels is
established in [10]. Other estimators include those based on moving average filtered
returns, see [4, 21, 30]; the range-based estimator, see [14]; the pre-averaging esti-
mator, see [25]; the quantile-based estimator [13]; and the duration-based estimator,
see [2].

The stochastic properties of market microstructure noise are very important in this
context. Estimators that are robust to iid noise can be adversely affected by dependent
noise. Hansen and Lunde [22] analyzed the empirical features of market microstruc-
ture noise and showed that serial dependence and endogenous noise are pronounced
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in high-frequency stock prices. Endogenous noise refers to the dependence between
the noise and the efficient price. A major advantage of the Markov chain estimator is
that dependent and endogenous noise is permitted in the framework. In fact, depen-
dent and endogenous noise arises naturally in this context, see [18]. Thus estimation
and inference are done under a realistic set of assumptions in regard to the noise.

The present paper is an extension of [19] to the multivariate context. This extension
posed new challenges that are specific to the multivariate context. For instance,
different assets are typically not traded at synchronous times. This non-synchronicity
leads to the so-called Epps effect, which manifests itself by a bias towards zero for
the realized covariance as the sampling frequency increases. See [31] for a study of
the determinants of the Epps effect. Another issue that may arise in the multivariate
context is a need for the estimator to be positive semidefinite, which is not guaranteed
by all multivariate estimators. The asynchronicity poses few obstacles for the Markov
chain estimator, albeit a large order of the Markov chain, or another remedy, may be
needed if an illiquid asset is paired with a liquid asset.

The outline of this paper is as follows. The Markov chain framework is presented
in Sect. 2, and the estimator in Sect. 3. In Sect. 4 we present two composite estimators
that estimate every element of the matrix separately. In Sect. 5 we propose a novel
projection methods that may be needed to ensure that the composite estimators are
positive semidefinite. The properties of the estimators are evaluated in Sect. 6 with a
simulation study, and an empirical application to commodity prices is presented in
Sect. 7.

2 The Markov Chain Framework

Let {Xt } denote a d-dimensional process, whose returns ∆Xt can take S distinct
values inRd . For notational convenience we take∆Xt to be a row-vector. The possible
states for the k-tuple, ∆Xt = {∆Xt−k+1, . . . ,∆Xt }, are indexed by s = 1, . . . , Sk ,
where the s-th state corresponds to the case where ∆Xt = xs , which is an 1 × kd
vector. See the example below.

We make the following assumption about the increments of the process.

Assumption 1 The increments {∆Xt }nt=1 are ergodic and distributed as a homoge-
neous Markov chain of order k < ∞, with S < ∞ states.

The homogeneity assumption is unlikely to be valid in the context of high-frequency
data. Fortunately the assumption is not critical for our results, because by increasing
the order, k, of the homogeneous Markov chain that is imposed on the high-frequency
returns, the resulting estimator becomes robust to inhomogeneity, see [19]. This
feature of the Markov chain estimator is demonstrated in our simulation study in
Sect. 6.

The transition matrix, P , is given by

Pr,s = Pr(∆Xt+1 = xs |∆Xt = xr ), for r, s = 1, . . . , Sk,
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and the corresponding stationary distribution, π ∈ RSk , which is unique under
Assumption 1, is defined by π ′P = π ′. The fundamental matrix by [26] is defined by

Z = (I − P + Π)−1,

where Π = ιπ ′ with ι = (1, . . . , 1)′ ∈ RSk so that each row of Π is simply π ′.
The Sk × d matrix, f, is defined to be the last d columns of x. So fs is the value

that (the latest observation of) ∆Xt has in state s. (Recall that a state represents a
realization of k consecutive returns). Finally, we define the diagonal matrix Λπ =
diag(π1, . . . ,πSk ).

The following example illustrates the multivariate Markov chain estimation in the
case where d = 2 and S = 2, and k = 1, 2.

Example 1 Suppose that we have two assets and that all price changes are up or
down by a single unit. If the order of the Markov chain is k = 1, then the transition
matrix, P, is a 4 × 4 matrix, and we can define the state matrix as

x = f =

⎛

⎜⎜⎝

1 1
1 −1

−1 1
−1 −1

⎞

⎟⎟⎠ .

If, instead, the order is k = 2, then we have S2 = 16 states, and consequently P will
be an 16 × 16 matrix and f an 16 × 2 matrix. For instance, we may order the states
as below, so that a row of x corresponds to a state value for (∆Xt−1,∆Xt ) and the
corresponding row of f will have just the state value for ∆Xt :

x =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1
1 1 1 −1
1 1 −1 1
1 1 −1 −1
1 −1 1 1
1 −1 1 −1
1 −1 −1 1
1 −1 −1 −1

−1 1 1 1
−1 1 1 −1
−1 1 −1 1
−1 1 −1 −1
−1 −1 1 1
−1 −1 1 −1
−1 −1 −1 1
−1 −1 −1 −1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

f =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1
1 −1

−1 1
−1 −1

1 1
1 −1

−1 1
−1 −1

1 1
1 −1

−1 1
−1 −1

1 1
1 −1

−1 1
−1 −1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.



366 P.R. Hansen et al.

Although the transition matrix is a 16 × 16 matrix, it has at most four non-zero
elements in each row. The reason is that many transitions are impossible. For, instance
if ∆Xt = {(1, 1), (1, 1)} then the next state will have to be {(1, 1), (∗, ∗)}, and a
transition to, {(−1,−1), (1, 1)} say, is impossible, and thus have probability zero.
So the transition matrix, P , will be increasingly sparse as k increases.

The underlying idea of the Markov chain estimator is a martingale decomposi-
tion of

Xt = Yt + µt +Ut ,

where {Yt ,Ft } is a martingale with increments ∆Y ′
t = e′

st Z f − e′
st−1

PZ f , µt = tµ
with µ = E(∆Xt ), and Ut is a stationary ergodic bounded process.

The asymptotic scheme that will be used in the present context is the following:

f = n−1/2ξ, with ξ ∈ RSk×d fixed. (1)

This local-to-zero asymptotic scheme is similar to those used in [16, 28], and is
natural under in-fill asymptotics. In the present context, it guarantees almost sure
convergence of the estimator.

Under this scheme, it follows from [20] (and the ergodic theorem) that

Proposition 1 Suppose that Assumption 1 holds, then under the asymptotic scheme
(1), we have

n∑

t=1

∆Yt∆Y ′
t
a.s.→ ξ ′Z ′(Λπ − P ′Λπ P)Zξ = ξ ′(Λπ Z + Z ′Λπ − ππ ′ − Λπ )ξ,

as n → ∞.

Proof By Assumption 1 it follows that ϑ ′
t = e′

st Zξ − e′
st−1

PZξ is an ergodic Markov
chain (of order k + 1) with

Eϑtϑ
′
t = ξ ′Z ′(Λπ − P ′Λπ P)Zξ = ξ ′(Λπ Z + Z ′Λπ − ππ ′ − Λπ )ξ,

where the first identity follows from [18, Theorem 2] and the second from [20,
Lemma 1]. By the ergodic theorem it follows that 1

n

∑n
t=1 ϑtϑ

′
t =

∑n
t=1 ∆Yt∆Y ′

t
converges to ξ ′(Λπ Z + Z ′Λπ − ππ ′ − Λπ )ξ almost surely (and in mean).

An implication of Proposition 1 is that

Σ# = ξ ′(Λπ Z + Z ′Λπ − ππ ′ − Λπ )ξ,
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is the quadratic variation of the martingale component. The same quantity is also the
long-run variance of ∆X ′

t in the sense that

var(X ′
n − X ′

0) = var(
n∑

t=1

∆X ′
t ) → Σ#, as n → ∞.

There are different ways to construct a multivariate volatility estimator using
Markov chain methods, and we shall present three distinct estimators and highlight
each of their advantages.

3 The Markov Estimator

Let P̂ be the maximum likelihood estimator of P and let π̂ be its corresponding
eigenvector, π̂ ′ P̂ = π̂ ′. Furthermore, let Π̂ = ιπ̂ ′ and Ẑ = (I − P̂ + Π̂)−1. The
expression for the long-run variance of the Markov chain motivates the estimator

MC# = n f ′(Λπ̂ Ẑ + Ẑ ′Λπ̂ − π̂ π̂ ′ − Λπ̂ ) f,

for which we have the following asymptotic distribution.

Proposition 2 Suppose that Assumption 1 holds, then under the asymptotic scheme
(1), we have

n1/2(MC# − Σ#)
d→ N (0,Ω),

where the asymptotic covariance between the (i, j)th and (l,m)th elements is

Ωi j,kl =
∑

r,s,v

[V (r)]s,v[Ξ(r, s)]i, j [Ξ(r, v)]l,m, (2)

with V (s) = 1
πr
(Λe′

r P − P ′er e′
r P) and

Ξ(r, s) = πrξ
′Z ′(Λzs − P ′Λzs P)Zξ

+πrξ
′(ππ ′ − 2π z′

s − 2zsπ ′)ξ + ξ ′[Λπ Zer z′
s + zse′

r Z
′Λπ ]ξ,

and where z′
s = e′

s Z is the s-th row of Z.

Proof Follows from [20, Theorem 2] by adapting their expressions (substitute ξ for
f and ξ ′π for µ).

Remark 1 We note that in the univariate case, MC# simplifies to n f ′Λπ̂ (2Ẑ − Π̂ −
I ) f, which was the estimator proposed by [19].
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3.1 Volatility of Logarithmic Prices

The object of interest is, typically, the volatility of log-prices, rather than Σ#, which
is the volatility of the price process in levels. An exact estimator can be obtained
with the Markov framework, by first extracting the Martingale component of Xt ,
however, for the univariate case [19] show that the following estimator,

MC = MC#

1
n

∑n
t=1 X

2
Tt

,

is virtually identical to the realized variance of the filtered logarithmic prices that are
deduced from the estimated Markov chain. The resulting approximate estimator of
the quadratic variation has several advantages, such as computational simplicity. In
the present multivariate context, we adopt the following estimator:

MC = D−1MC#D−1, (3)

with D = diag (δ1, . . . , δd) and δ2
j = n−1 ∑n

t=1 X
2
j,t j = 1, . . . , d. Our simulation

in Sect. 6 shows that this approximate estimator is more accurate than other realized
measures.

Alternatively one could use the estimator MC#
i, j/

1
n

∑n
t=1 Xi,t X j,t , for i, j =

1, . . . , d, but we prefer (3) because positively definiteness of MC# is passed onto
MC, and in practice δiδ j ≃ 1

n

∑n
t=1 Xi,t X j,t because the prices do not vary much

in relation to their average level over the estimation window, which is typically a
trading day.

4 Composite Markov Estimators

The number of possible states increases exponentially with the dimension of the
process, d. Consequently, the dimension of P can become unmanageable even with
moderate values of S, k, and d. For instance, with d = 10 assets, and price changes
ranging from −4 to 4 cents, S = 9, and a Markov chain of order k = 2, the transition
matrix would be (Sd)k × (Sd)k = 920 × 920, which is impractical.

As an alternative, one can construct a composite estimator, that combines lower
dimensional Markov estimator, which is in the spirit of [23, 29]. In this section we
consider two such estimators. The first is constructed from univariate estimators,
using a simple transformation for the estimation of covariances. The second estima-
tor is constructed from bivariate Markov estimators, which has the advantage that
standard errors of each element will be readily available. We will make use of these
standard errors in the next section.
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4.1 The 1-Composite Markov Estimator

In this section we introduce a composite estimator that is based on univariate Markov
estimators. The identity

cov(X, Y ) = var(X + Y ) − var(X − Y )
4

motivates the estimator

MC#1
i, j = 1

4 (MC#
Xi+X j

− MC#
Xi−X j

),

where MC#
Xi+X j

and MC#
Xi−X j

are the univariate Markov chain estimator, applied
to the time series Xi,t + X j,t and Xi,t − X j,t , respectively. Note that the diagonal
terms, i = j , simplifies to 1

4 MC#
2Xi

= MC#
Xi

. This approach to polarization-based
estimation of the covariance is well known. In the context of high-frequency data it
was first used in [24, Sect. 3.6.1] who also explored related identities. More recently
it has been used in [1].

The 1-Composite estimator is mapped into estimators of the volatility of log-
returns using the same diagonal matrix, D, as in (3), thus MC1 = D−1MC#1 D−1.

4.1.1 Pre-Scaling

If one seeks to estimate the covariance of two assets, whose increments are on
different grid sizes, it can be advantageous to use differentiated scaling of the assets,
specifically

cov(X, Y ) = var(aX + bY ) − var(aX − bY )
4ab

,

where a and b are constants. This can, in some cases, greatly reduce the number of
states, which is computationally advantageous.

4.2 The 2-Composite Markov Estimator

In this subsection we introduce a composite estimator that uses bivariate MC# esti-
mates. For all pairs of assets we compute the correlation along with an estimate of
its asymptotic variance, which will be used in the next section.

We simply estimate the bivariate Markov process (Xi,t , X j,t )
′, and obtain the

estimator of Sect. 3, MC#, which is a 2 × 2 matrix. The covariance terms we seek is
the lower-left (or upper-right) element
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MC#2
i, j =

{
MC#(Xi ) if i = j,
MC#

1,2(Xi , X j ) if i ̸= j,

where MC#
1,2(Xi , X j ) is the upper right element of the 2 × 2 matrix MC#, for

the bivariate process, (Xi , X j ). In contrast to the covariance estimated with the
1-composite estimator, the standard error of MC#

1,2(Xi , X j ) is readily available
from (2).

Analogous to the other estimators, the 2-composite estimator is mapped into
estimators of the volatility of log-returns with MC2 = D−1MC#2 D−1.

4.3 Advantages and Drawbacks of Composite Estimators

The advantages of the composite estimators are threefold.

• Computational: The state space for a univariate series is smaller than that of a
multivariate.

• Dimension: Enables the construction of covariance matrices of any dimension,
whereas the multivariate approach is limited to relatively low dimensions.

• No need to synchronize the observation times for each of the asset, e.g. by refresh
time, see [9].

The drawbacks of the composite estimators include:

• Positive semidefinite estimate is not guaranteed
• Estimate of asymptotic variance is not readily available.

The dimension of the transition matrix (and fundamental matrix) increases rapidly
with the dimension of the process d, and at some point it becomes computationally
impossible to manipulate the relevant expressions that are needed for the computation
of the Markov estimator. In our empirical analysis with k = 5, the dimension of P
was about 500–1000 for d = 1, about 3000–5000 for d = 2, and about 8000–10,000
for d = 3. The problem with non-psd appears to be relatively rare in practice when d
is small. We have only seen one case where a 5 × 5 estimate was non-psd estimate.
The occurrence is more common in higher dimensions. Of the 251 14 × 14 estimators
we obtained for 2013, 14 of them were non-psd.

5 Enforcing Positivity

While MC# is a quadratic form that yields a positive semidefinite estimator, there is
no reason to expect that the composite estimators, MC#1 and MC#2 , will be positive
semidefinite (PSD) in finite samples. This problem is often encountered in estimation
of high-dimensional variance-covariance matrices.



A Markov Chain Estimator of Multivariate Volatility from High Frequency Data 371

One can project a non-PSD estimate, by solving the following semi-definite pro-
gram for the variable Σ

min
Σ

∥Σ − A∥Fro subject to Σ ≥ 0. (4)

The solution can be found efficiently by computing the spectral decomposition of
the matrix A, and drop all negative eigenvalues, i.e. map the symmetric matrix,
A = Qdiag(λ1, . . . , λd)Q′ into Qdiag(λ+

1 , . . . , λ
+
d )Q

′, where λ1, . . . , λd are the
eigenvalues of A and x+ = max(x, 0). Such an estimator will, due to the zero eigen-
values, be on the boundary of the space of psd matrices, which motivated [27] to
impose an additional constraint, diag(Σ) = diag(A).

In this paper we propose a novel projection that takes advantage of standard errors
of the individual elements of the matrix A when these are available. Thus let ωi j be
(an estimate of) the standard errors of Ai j . Then we solve the following program

min
Σ

d∑

i, j=1

(
Σi j − Ai j

ωi j

)2

subject to Σ ≥ 0. (5)

The solution can be obtained using semidefinite programming solvers that are readily
available, including the cvx software for Matlab by [17]. The optimization problem
can be supplemented with the constraint diag(Σ) = diag(A), which would produce a
constrained estimate with strictly positive eigenvalues, except in pathological cases,
e.g. if A is psd with zero eigenvalues to begin with.

The projection in (5) is appealing because it attempts to influence accurately
measured elements of A less than those that are relatively inaccurate. An even more
appealing projection along these lines would also account for correlations across
elements. In the present context, such cross correlations are only available for the
estimator MC#. However, since this estimator, MC#, is psd per construction, there is
no need for a projection of this estimator.

6 Simulation

In this section we compare the 1-composite Markov estimator against some bench-
mark. Diagonal elements are compared with the realized variance (RV) and the
realized kernel (RK). Off-diagonal elements are compared with the realized covari-
ance (RC).
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6.1 Efficient Price

Our simulations are based on two designs for the latent price process, Yt . In the first
design, Yt is simply sampled from a Brownian motion with constant volatility. In
the second design, Yt is drawn from a stochastic volatility model, which is known
as the Dothan model in the literature on interest rates, similar to that used in [8].
Specifically we simulate

log Yi,t = log Yi,t + σi,t Vi,t , i = 1, 2,

where Vi,t = γ Zi,t +
√

1 − γ 2Wi,t with (Z1,t , Z2,t ,W1,t ,W2,t ) being iid Gaussian,
all having unit variance and zero correlation, with the exception that
cov(W1,t ,W2,t ) = ρ.

In the design with stochastic volatility, the volatility, σi,t , correlates with Zi,t , so
that γ controls the leverage effect of the volatility on the stock prices. Specifically,

σi,t =
√

∆
{
exp

(
β0 + β1τi,t

)}
,

where τi,t = exp(α∆)τi,t−1 +
√

exp(2α∆)−1
2α

Zi,t , with τi,1 drawn from its uncondi-

tional distribution, and ∆ = 1
N with N = 23,400. Additional details about the spec-

ification is given in the Appendix.
The values of the parameters in both designs are summarized in Table 1.

6.2 Noise

We will use two specifications for the noise. The first is pure rounding noise, so that

Xt = δ[Yt/δ],

where [a] is the rounding of a to the integers so that the parameter δ controls the
coarseness of the rounding error.

The second specification has an additive noise component in addition to the round-
ing error, specifically

Xt = δ[(Yt +Ut )/δ],

Table 1 Parameters values for simulating the efficient price process, Yt
β0 β1 α ρ γ

Constant volatility 0 0 – –0.3 0

Stochastic volatility –0.3125 0.125 –0.025 –0.3 0.5



A Markov Chain Estimator of Multivariate Volatility from High Frequency Data 373

09:36 10:48 12:00 13:12 14:24 15:36
9.95

10

10.05

10.1
Prices from SV-OU process

09:36 10:48 12:00 13:12 14:24 15:36
0.8
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1.2

Simulated volatility from OU process

Fig. 1 A typical sample path of the simulated stochastic volatility process. The upper panel displays
the price process, Yt , and the observed process, Xt , that is subject to noise and rounding error. The
lower panel displays the corresponding volatility process, σ 2(t)

where Ut are iid and uniformly distributed. The idea is that it would more closely
resemble the bid ask bounce (due to the additional jitter introduced by Ut , we will
either round up or down).

In our simulation study we use δ = 0.01 to emulate rounding errors to a grid, and
the noise is Ut ∼ iidU [− 1

3 ,
1
3 ] which adds additional (mean-reverting) jitter to the

returns.
In Fig. 1 we show an example of a realization of the process with stochastic

volatility using the design in Table 1. The upper panel has Yt and Xt , where the latter
is clearly identified by it being confined to the grid values. The lower panel displays
the corresponding volatility process, specifically we plot σ 2(t) = σ 2

i,t/∆.

6.3 Estimators and Tuning Parameters

We consider the realized variance computed with different sampling frequencies. To
imitate a 24 h period with second-by-second price observations, we generate 23,400
noisy high-frequency returns in each simulation.

The realized variance (RV) and the realized covariance (RC) is computed using
different sampling frequencies. The choice of sampling frequency entails a bias-
variance trade-off, because the bias arising from the noise is most pronounced at high
sampling frequencies, while the variance of the estimator increases as the sampling
frequency is lowered. Thus for the RV and the RC we sample every H -th price
observation where H ∈ {1, 3, 5, 10, 15, 30, 60, 120, 240}.
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The multivariate realized kernel (MRK) follows the implementation in [9], which
is based on the Parzen kernel, and an automatic selection of the bandwidth parameter.
This estimator is also applied to high-frequency returns based on the various sample
frequencies. The MRK should, in principle, be most accurate when based on returns
sampled at the highest frequency, H = 1.

The tuning parameter for the Markov chain estimator is the order of the Markov
chain, k, and we apply this estimator for k ∈ {1, . . . , 5}.

6.4 Simulation Results

We report bias and the root mean squared error (RMSE) for each of the estimators
using the various choices for their respective tuning parameters. The results are based
on 10,000 simulations. The results are presented in Tables 2 and 3 for the case with
constant volatility and stochastic volatility, respectively.

Consider first the case with constant volatility in Table 2. With pure rounding
error we note that the Markov chain estimator tend to outperform both the kernel
estimator and the realized variance in terms of the mean squared error. Similarly for
the covariance, the MC 1-composite estimator dominates the RC and performs on
par with the MRK. The Markov estimator is somewhat insensitive to the choice of
k, so even with a non-optimal choice for k, the Markov estimator is fairly accurate.
The MRK is similarly insensitive to the choice for H . In contrast, the RV and the RC
are very sensitive to the choice of H , and suffer from large biases when H is small.

Turning to the case with both additive noise and rounding error. This design
generates increments with rather different features. While k = 1 was the optimal
choice with rounding error, the best configuration is now k = 3 or k = 4. The RV
performs even worse in this design, the RC just as bad as in the previous design,
whereas MRK performs as well as in the previous design, and is on par with the
Markov estimator. This comparison is again made with hindsight as assume that
relatively good choices of tuning parameters, for k and H , respectively, are used. For
the covariance, we observe that the RMSE of the Markov estimator is predominantly
driven by a bias.

Next we turn to the result in Table 3 which is for the case with stochastic volatility.
The Markov chain estimator is based on fitting a homogeneous Markov chain to the
observed increment. For this reason it might be expected that the Markov estimator
is not well suited for the design with time varying volatility, see Fig. 1. However,
even in the case with stochastic volatility that induced an inhomogeneous model
for the increments, we see that MC performs well. The RMSEs are, as expected, a
bit larger. Interestingly, it is the design with pure rounding errors that results in the
largest RMSEs. Both the Markov estimator and the MRK appear to benefit from the
additional layer of noise that is added prior to the rounding error.
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Table 2 Simulation results for the case with constant volatility
Panel A: Constant volatility and pure rounding error

Variance Covariance

MC MC

k Bias Rmse Bias Rmse

1 0.002 0.109 –0.008 0.075

2 0.004 0.144 –0.053 0.093

3 0.007 0.174 –0.030 0.098

4 0.005 0.202 –0.020 0.107

5 0.003 0.221 –0.010 0.120

RV MRK RC MRK

H Bias Rmse Bias Rmse Bias Rmse Bias Rmse

1 3.752 3.763 0.140 0.182 –0.450 0.451 –0.008 0.074

3 3.445 3.455 0.058 0.136 –0.373 0.377 –0.007 0.088

5 3.136 3.145 0.037 0.136 –0.313 0.320 –0.007 0.097

10 2.486 2.494 0.017 0.146 –0.215 0.229 –0.008 0.110

15 2.014 2.021 0.010 0.155 –0.156 0.178 –0.009 0.119

30 1.222 1.229 0.002 0.175 –0.082 0.120 –0.011 0.135

60 0.646 0.657 –0.005 0.200 –0.042 0.100 –0.014 0.154

120 0.324 0.350 –0.015 0.234 –0.020 0.104 –0.018 0.182

240 0.161 0.231 –0.024 0.283 –0.010 0.128 –0.019 0.224

Panel B: Stochastic volatility with noise and rounding error

Variance Covariance

MC MC

k Bias Rmse Bias Rmse

1 0.281 0.302 –0.066 0.115

2 0.140 0.173 –0.137 0.151

3 0.056 0.131 –0.078 0.104

4 0.025 0.130 –0.076 0.103

5 0.011 0.141 –0.049 0.092

RV MRK RC MRK

H Bias Rmse Bias Rmse Bias Rmse Bias Rmse

1 9.697 9.708 0.112 0.159 –0.451 0.456 –0.006 0.075

3 8.086 8.095 0.044 0.131 –0.374 0.389 –0.005 0.090

5 6.829 6.838 0.027 0.135 –0.314 0.338 –0.006 0.099

10 4.720 4.727 0.013 0.149 –0.213 0.252 –0.007 0.113

15 3.488 3.495 0.009 0.160 –0.158 0.204 –0.008 0.122

30 1.859 1.866 0.005 0.181 –0.081 0.140 –0.011 0.138

60 0.938 0.949 0.002 0.208 –0.039 0.114 –0.015 0.160

120 0.467 0.491 –0.007 0.243 –0.020 0.115 –0.018 0.188

240 0.233 0.293 –0.016 0.291 –0.009 0.137 –0.021 0.230
aPanel A has simulation results for the case where the underlying volatility is constant and the
observed process is only subject to rounding error. Panel B presents the corresponding results for
the case with both noise and rounding error
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Table 3 Simulation results for the case with stochastic volatility
Panel A: Stochastic volatility and pure rounding error

Variance Covariance

MC MC

k Bias Rmse Bias Rmse

1 0.005 0.125 –0.020 0.091

2 0.003 0.165 –0.024 0.084

3 0.003 0.214 –0.019 0.089

4 0.002 0.260 –0.010 0.098

5 –0.001 0.327 –0.007 0.108

RV MRK RC MRK

H Bias Rmse Bias Rmse Bias Rmse Bias Rmse

1 3.070 3.325 0.132 0.196 –0.325 0.443 –0.007 0.072

3 2.812 3.032 0.058 0.168 –0.270 0.370 –0.006 0.086

5 2.555 2.741 0.037 0.180 –0.227 0.313 –0.007 0.094

10 2.017 2.141 0.018 0.198 –0.155 0.221 –0.008 0.105

15 1.636 1.721 0.011 0.222 –0.114 0.173 –0.009 0.113

30 1.016 1.056 0.000 0.249 –0.059 0.112 –0.011 0.129

60 0.571 0.622 –0.010 0.295 –0.031 0.098 –0.014 0.151

120 0.304 0.371 –0.022 0.374 –0.016 0.103 –0.016 0.181

240 0.157 0.314 –0.031 0.498 –0.009 0.127 –0.016 0.223

Panel B: Stochastic volatility with noise and rounding error

Variance Covariance

MC MC

k Bias Rmse Bias Rmse

1 0.219 0.272 –0.055 0.143

2 0.117 0.185 –0.093 0.131

3 0.055 0.175 –0.053 0.097

4 0.034 0.193 –0.050 0.094

5 0.021 0.212 –0.034 0.090

RV MRK RC MRK

H Bias Rmse Bias Rmse Bias Rmse Bias Rmse

1 9.619 9.639 0.103 0.202 –0.333 0.461 –0.007 0.073

3 8.010 8.028 0.042 0.170 –0.275 0.392 –0.005 0.087

5 6.757 6.773 0.026 0.177 –0.230 0.340 –0.006 0.095

10 4.656 4.668 0.013 0.197 –0.160 0.256 –0.007 0.108

15 3.432 3.443 0.008 0.214 –0.116 0.205 –0.007 0.117

30 1.825 1.836 0.002 0.253 –0.062 0.142 –0.009 0.134

60 0.924 0.942 –0.004 0.311 –0.032 0.116 –0.011 0.157

120 0.462 0.508 –0.013 0.389 –0.017 0.113 –0.014 0.185

240 0.232 0.357 –0.023 0.488 –0.009 0.132 –0.016 0.226
aPanel A has simulation results for the case where the underlying volatility is stochastic and the
observed process is only subject to rounding error. Panel B presents the corresponding results for
the case with both noise and rounding error
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7 Empirical Analysis

7.1 Data Description

We apply the Markov chain estimator to high-frequency commodity prices, that have
previously been used in [15]. We confine our empirical analysis to 2013 data and
consider in our study high frequency data for 14 assets. The 14 assets include the
exchange traded fund, SPY, that tracks the S&P 500 index, and 13 commodity futures.
We refer to [15] for detailed information about the data, including the procedures
used for cleaning the high frequency data for outliers and other anomalies. Summary
statistics for the 14 assets are presented in (Table 4).

Of the 15 commodities analyzed in [15], we drop two of these series for com-
putational reasons. Specifically, we dropped “Heating Oil” (HO) because it has an
unusually large number of distinct second-to-second price increments and “Feeder
Cattle” (FC) because it is substantially less liquid compared with the other com-
modities. Thus, in addition to the SPY, we use the following 13 commodities in our
empirical analysis: Crude Light (CL), Natural Gas (NG), Gold (GC), Silver (SV),
Copper (HG), Live Cattle (LC), Lean Hogs (LH), Coffee (KC), Sugar (SB), Cotton
(CT), Corn (CN), Soybeans (SY) and Wheat (WC).

We exclusively apply the Markov estimators to high-frequency data from the time
interval 10:00–14:00 eastern standard time, because all assets are actively traded in
this period. The high-frequency prices for eight selected assets for March 18th, 2013
are displayed in Fig. 2.

7.2 Empirical Results

First we present detailed results for March 18th, 2013 (to celebrate the occasion for
writing this paper). Daily estimates (for the 10:00–14:00 interval) for all trading days
in 2013 will be presented in figures.

7.2.1 Daily Estimates for March 18, 2013

In Table 5 we present five estimators of the volatility matrix for five assets. There are
relatively large discrepancies between the two realized variances, which may be due
to sampling error or market microstructure noise. The Markov estimators are largely
in agreement about the correlations, but the full estimator yields a smaller estimate
of the diagonal elements in some cases. This may be caused by the estimator being
somewhat unreliable, as it is based on n = 8,700 observations and the underlying
transition matrix is an 8,600 × 8,600 matrix in this case. Further research is needed
to characterize the limitations of the full estimator in practice.
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Fig. 2 High frequency prices for eight selected commodities on March 18th, 2013 during the period
from 10:00 AM to 2:00 PM

In Tables 6 and 7 we present estimates of the full 14 × 14 matrix. The realized
variances are in Table 6 and the two composite Markov estimators are in Table 7. Joint
estimation of the full 14 × 14 covariance matrix is not expected to be precise because
the number of observed states (and the dimensionality of the transition matrix) is
equal to the number of observations in that case. As in the previous example, the two
realized variance estimators produce quite different values whereas the composite
Markov estimators produce rather similar results. In general, signs and magnitudes
of the elements of Markov covariance matrices are largely in agreement with those
of the realized variances.
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Table 5 Two realized variances and the three variants of the Markov chain estimator are presented
RV5min: Realized variance with 5-min sampling

SPY CL GC SV KC

S&P 500 81.16 79.39 –8.26 –20.03 –15.24

Light crude 0.48 344.08 –36.52 –1.39 –2.29

Gold –0.08 –0.16 146.11 164.45 –47.74

Silver –0.13 –0.00 0.77 316.22 –36.77

Coffee “C” –0.08 –0.01 –0.20 –0.10 407.69
RV10min: Realized variance with 10-min sampling

SPY CL GC SV KC

S&P 500 68.92 90.57 1.98 –20.04 –40.79

Light crude 0.59 342.05 –69.66 –57.07 –11.96

Gold 0.03 –0.43 78.43 50.73 –35.05

Silver –0.20 –0.26 0.48 139.93 –17.48

Coffee “C” –0.23 –0.03 –0.19 –0.07 446.70
MC: Markov chain estimator (full)

SPY CL GC SV KC

S&P 500 80.65 88.17 –24.05 –77.56 –1.89

Light crude 0.49 407.24 –75.01 –124.63 49.36

Gold –0.26 –0.35 109.99 155.36 –32.78

Silver –0.45 –0.32 0.77 370.69 –12.07

Coffee “C” –0.01 0.15 –0.19 –0.04 257.15
MC1: Markov chain estimator 1-composite

SPY CL GC SV KC

S&P 500 116.84 75.77 –10.69 4.58 21.01

Light crude 0.35 391.86 14.34 61.58 41.60

Gold –0.09 0.07 116.87 151.25 –16.83

Silver 0.02 0.16 0.72 380.17 –0.71

Coffee “C” 0.09 0.10 –0.08 –0.00 421.94
MC2: Markov chain 2-composite

SPY CL GC SV KC

S&P 500 116.84 80.35 –12.92 –7.44 13.76

Light Crude 0.38 391.86 –1.45 39.30 29.37

Gold –0.11 –0.01 116.87 149.72 –27.00

Silver –0.04 0.10 0.71 380.17 –59.90

Coffee “C” 0.06 0.07 –0.12 –0.15 421.94

The estimators are for the 10:00 AM–2:00 PM period on March 18, 2013 for five selected assets.
Variances and covariances are annualized and further scaled by 104. Correlations are in the lower
triangle in italic font
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7.2.2 Estimates for Pooled March Data

Finally we have pooled the high-frequency data for all of March and estimated
the 14 × 14 matrix that reflects the volatility in March, 2013 that occurred during
the 10:00 AM–2:00 PM trading periods. With 20 trading days in March, 2013, this
adds up to 80 h of high-frequency data. Precision is expected to improve with the
larger sample size, although the dimensions of the underlying transition matrices are
expected to increase as a larger number of states and transitions will be observed in a
larger sample, and the latter can potentially cause computational difficulties. For the
2-composite estimator with k = 4 we observed between 15000 and 30000 distinct
states in the pooled data set. Another challenges for the Markov estimator in the
pooled sample is that a larger degree of inhomogeneity may be expected. Hansen
and Horel [19] showed that an inhomogeneous Markov process can be approximated
by a homogeneous Markov process, by increasing the order of the Markov chain.
So a larger k may be needed in the pooled data, which also poses computational
challenges.

In Tables 8 and 9 we report estimates for the 14 × 14 covariance matrix computed
with the realized variances and the two composite Markov estimators. In contrast
to the data for March 18th, 2013, the realized variances are largely in agreement
for the pooled data. Albeit some differences are observed between the 5- and 10-
min realized variances. The composite Markov estimators are in disagreement in
some cases, which we attributed to the different order of the Markov chain that were
used. The 1-composite estimator was computed with k = 5 whereas 2-composite
was estimated with k = 3, for computational reasons. Naturally, one could use a
higher order to compute the diagonal elements, but we used the same order for all
entries of the 2-composite estimator to illustrate the differences that arise in this
case. The 1-composite Markov estimator produces estimates that are generally in
agreement with those of the realized variance, both in terms of magnitude and signs
of covariances.

7.2.3 Daily Estimates for 2013

We have estimated variances and covariances for the 10:00–14:00 interval for all
trading days during 2013. Some selected series are presented in Figs. 3 and 4.

In Fig. 3 we plot annualized volatilities for SPY, Crude Oil, Gold, and Wheat
based on the Markov estimator with k = 5, and these are benchmarked with those of
the realized variance with 10-min sampling. The estimates are quite similar, both for
the very liquid assets, SPY, Crude Oil, and Gold, and the relatively illiquid assets,
Wheat, whose high-frequency data have pronounced bid-ask bounces.

In Fig. 4 we plot daily estimates of the correlations for both the 1- and 2-composite
Markov estimators. These are benchmarked with the realized correlations based
on 10-min sampling. We observed that Gold/Silver are highly correlated and its
correlation is highly persistent over the year 2013. More moderate correlations are
observed for SPY/Crude Oil and Soybeans/Wheat, and these series exhibit a higher
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Fig. 3 Realized volatility based on 10 min returns against volatility computed with MC estimator
(order k = 5) in 2013. Estimated values are annualized
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Fig. 4 Realized correlation based on 10 min returns against correlation computed with MC esti-
mator (order k = 5) in 2013
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degree of time-variation. In the case of SPY/Gold we observe a less stable correlation
that changes sign several times during the year. The general patterns are successfully
captured by the composite Markov estimators, and while the realized correlation is in
agreement about the general trends, it exhibits far more day-to-day variation which
suggests that it is less accurate. The smooth and persistent behavior of the Markov
estimators may be attributed to these estimators being more accurate.

8 Conclusion

In this paper we have proposed a multivariate volatility estimator that is based on the
theory of finite Markov chains. The Markov chain estimator takes advantage of the
fact that high-frequency prices are confined to a grid. This is the first robust multi-
variate estimator for which standard errors are readily available. Previous estimators
include the multivariate realized kernel estimator, whose standard error also requires
an estimate of the long-run variance of the noise, which is difficult to estimate because
the noise is, in practice, small, serially dependent, and endogenous. The multivariate
kernel estimator (MRK) converges at rate n1/5. In contrast, the Markov estimator
converges at rate n1/2 owing to the specification assumed for the high-frequency
data. These rates are, however, not directly comparable for practical situation, as the
order of the Markov chain may be required to increase with n, in order to accom-
modate inhomogeneity resulting from time-varying volatility. Our simulation design
suggests that the Markov estimator and the MRK performs similarly in practice, so
the major advantage of the Markov estimator is the readily available standard error.

The estimator performs well in a simulation design, and is relatively insensitive
to the choice of the order of the Markov chain, k, which is the tuning parameter that
must be chosen in practice.

A potential limitation of the estimator is the high-dimensional objects that the
estimator is computed from. For the full estimator the dimension can be as large as
(Sd)k , where S is the number of primitive states for the individual series, d is the
dimension of the process and k is the order of the Markov chain. The dimension
will typically be much smaller in practice because many states are not observed in a
given sample, and the transition matrix will be very sparse, because most transitions
between states are unobserved. So there is a need to further analyze the finite sample
properties of the full Markov estimator, and to characterize its limitations.

The two composite Markov estimators alleviate the challenges with high dimen-
sional objects, but may require a projection to guarantee a positive semidefinite
estimate. For this purpose we have proposed a novel projection that makes use of the
standard errors of the elements of the matrix being projected. Since these are readily
available for the 2-composite estimator it is appealing to incorporate these, so that a
projection leaves accurately estimated elements relatively unchanged.

The empirical analysis of commodity prices illustrated the three Markov estima-
tors, and benchmarked them against conventional realized variances. The estimates
were largely in agreement, but the Markov estimators fare particularly well with



A Markov Chain Estimator of Multivariate Volatility from High Frequency Data 393

regards to estimating correlations. While the time series of daily correlation esti-
mates based on the realized variance were somewhat erratic, those of the Markov
estimators were more stable.

Appendix: Details on the Simulation Design with
Stochastic Volatility

For comparison with the simulation design with constant volatility we seek to have
the integrated variance be 1, in expectation. This is achieved as follows. Note that

E((d log Yi,t )2) = E
[
exp

{
2

(
β0 + β1τi,t

)}
∆

]
,

and since we (approximately) have τi,t ∼ N (0, a2) with

a2 =
1−exp(2α∆)

−2α

1 − exp(α∆)2
= 1

−2α
,

it follows that
2(β0 + β1τi,t ) ∼ N (2β0, 4β2

1
1

−2α
).

Hence

E
[
exp

{
2

(
β0 + β1τi,t

)}]
= exp

(
2β0 + β2

1
1

−α

)
,

which will be equal to 1 if we set β0 = β2
1/(2α).
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