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EQUIVALENCE BETWEEN OUT-OF-SAMPLE FORECAST
COMPARISONS AND WALD STATISTICS

BY PETER REINHARD HANSEN AND ALLAN TIMMERMANN1

We demonstrate the asymptotic equivalence between commonly used test statis-
tics for out-of-sample forecasting performance and conventional Wald statistics. This
equivalence greatly simplifies the computational burden of calculating recursive out-
of-sample test statistics and their critical values. For the case with nested models, we
show that the limit distribution, which has previously been expressed through stochastic
integrals, has a simple representation in terms of χ2-distributed random variables and
we derive its density. We also generalize the limit theory to cover local alternatives and
characterize the power properties of the test.

KEYWORDS: Out-of-sample forecast evaluation, nested models, testing.

1. INTRODUCTION

OUT-OF-SAMPLE TESTS OF PREDICTIVE ACCURACY are used extensively
throughout economics and finance and are regarded by many researchers as
the “ultimate test of a forecasting model” (Stock and Watson (2007, p. 571)).
Such tests are frequently undertaken using the approach of West (1996),
which accounts for the effect of recursive updating in parameter estimates.
This approach can be used to test the null of equal predictive accuracy of
two nonnested regression models evaluated at the probability limits of the
estimated parameters (West (1996)), and for comparisons of nested models
(McCracken (2007) and Clark and McCracken (2001, 2005)). The nested case
gives rise to a test statistic whose limiting distribution (and, hence, critical
values) depends on integrals of Brownian motion. The test is burdensome to
compute and depends on nuisance parameters such as the relative size of the
initial estimation sample versus the out-of-sample evaluation period.

This paper shows that a recursively generated out-of-sample test of equal
predictive accuracy is asymptotically equivalent to one based on simple Wald
statistics and documents that the equivalence is reliable in finite samples. Our
result has four important implications. First, it simplifies calculation of the test
statistics, which no longer requires recursively updated parameter estimates.
Second, for the case with nested models, it greatly simplifies the computation
of critical values, which has so far relied on numerical approximation to in-
tegrals of Brownian motion but now reduces to simple convolutions of chi-
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2486 P. R. HANSEN AND A. TIMMERMANN

squared random variables. Third, our asymptotic results also cover the case
with local alternatives, thus shedding new light on the power properties of the
test. Fourth, our result provides a new interpretation of out-of-sample tests of
equal predictive accuracy which we show are equivalent to simple parametric
hypotheses and so could be tested with greater power using conventional test
procedures.

The paper is organized as follows. Section 2 establishes the equivalence be-
tween the out-of-sample statistics and conventional Wald statistics for any pair
of regression models. Section 3 focuses on the comparison of nested mod-
els and establishes the simplifications of the limit distribution for a test of
equal predictive accuracy, while Section 4 concludes. Proofs of the results are
provided in the Appendix. A companion Supplemental Material document
(Hansen and Timmermann (2015b)), available on the web, contains additional
details and simulation results.

2. THEORY

Consider the predictive regression model for an h-period forecast horizon

yt = β′Xt−h + εt� t = 1� � � � � n�(1)

To avoid “look-ahead” biases, out-of-sample forecasts generated by the re-
gression model (1) are commonly based on recursively estimated parameter
values. This can be done by regressing ys on Xs−h, for s = 1� � � � � t, result-
ing in least squares estimates β̂t = (

∑t

s=1Xs−hX ′
s−h)

−1
∑t

s=1Xs−hys, and using
ŷt+h|t(β̂t)= β̂′

tXt to forecast yt+h.2
The resulting forecast can be compared to that from an alternative regres-

sion model that uses X̃t−h as a regressor:

yt = δ′X̃t−h +ηt�(2)

whose forecasts are given by ỹt+h|t(δ̂t)= δ̂′
tX̃t , where δ̂t = (∑t

s=1 X̃s−hX̃ ′
s−h)

−1 ×∑t

s=1 X̃s−hys. We do not specify how X̃t is related to Xt . In particular, the two
models may be nested, nonnested, or overlapping. We let k and k̃ denote the
dimension of Xt and X̃t , respectively.

West (1996) proposed to judge the merits of a prediction model through its
expected loss evaluated at the population parameters. Under mean squared
error (MSE) loss, a test of equal predictive performance takes the form3

H0 : E
[
yt − ŷt|t−h(β)

]2 = E
[
yt − ỹt|t−h(δ)

]2
�(3)

2We assume that initial values X−1� � � � �X−h+1, are observed.
3Another approach considers E[yt − ŷt|t−h(β̂t−h)]2 which typically depends on t; see Giacomini

and White (2006).
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OUT-OF-SAMPLE FORECAST COMPARISONS AND WALD STATISTICS 2487

where β and δ are the probability limits of β̂n and δ̂n, respectively, as n→ ∞.
This and related hypotheses motivate a test statistic based on the out-of-sample
MSE loss differential

	MSEn =
n∑

t=nρ+1

(
yt − ỹt|t−h(δ̂t−h)

)2 − (
yt − ŷt|t−h(β̂t−h)

)2
�

where nρ is the number of observations set aside for initial estimation of
β and δ, while t = nρ + 1� � � � � n is the out-of-sample period used for fore-
cast evaluation. This is taken to be a fraction ρ ∈ (0�1) of the full sam-
ple, n, that is, nρ = �nρ� (the integer part of nρ). Test statistics based on
	MSEn appear in many studies, including Diebold and Mariano (1995), West
(1996), McCracken (2007), and Clark and McCracken (2014), in comparisons
of nested, nonnested, and overlapping regression models.

Our first result compares the MSE loss of ŷt+h|t(β̂t) to the corresponding
loss from the very simple model that has no predictors, that is, ỹt+h|t(δ̂t) = 0.
Although the scope of this result is obviously limited, this no-change forecast
has featured prominently in testing the random walk model in finance and
has also been used as a benchmark in macroeconomic forecasting. Moreover,
results for the general case can be derived from this simple case. We will show
that 	MSEn can be expressed in terms of two pairs of standard Wald statistics,
with one pair being based on the full sample, t = 1� � � � � n, while the other is
based on the initial estimation sample, t = 1� � � � � nρ. In the case with nested
regression models, the result simplifies further in a way that allows us to express
	MSEn as the difference between two Wald statistics.

To prove this result, we need assumptions ensuring that the recursive least
squares estimates, β̂t−h, t = nρ + 1� � � � � n, and related objects converge at con-
ventional rates in a uniform sense. We make the following assumption, where
‖ · ‖ denotes the Frobenius norm, that is, ‖A‖ = √

tr{A′A} for any matrix A.

ASSUMPTION 1:
(i) For some positive definite matrix, Σ,

sup
r∈[0�1]

∥∥∥∥∥1
n

�nr�∑
t=1

Xt−hX ′
t−h − rΣ

∥∥∥∥∥ = op(1)�(4)

(ii) Let un�t = n−1/2Xt−hεt . For some Γj ∈ R
k×k, j = 0� � � � �h− 1, we have

sup
r∈[0�1]

∥∥∥∥∥
�nr�∑
t=1

un�tu
′
n�t−j − rΓj

∥∥∥∥∥ = op(1)�(5)
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2488 P. R. HANSEN AND A. TIMMERMANN

The autocovariances of {Xt−hεt} play an important role when h > 1. De-
fine Ω = ∑h−1

j=−h+1 Γj and note that Ω is closely related to the long-run vari-
ance, Ω∞ := plimn→∞

1
n

∑n

s�t=1Xs−hεsεtX ′
t−h, whenever it is well-defined. The

two are obviously equal when the higher-order autocovariances are all zero,
which would correspond to a type of unpredictability of the forecast errors
beyond the forecast horizon, h; this can be tested by inspecting the autocorre-
lations.

Next, define

Un(r)=
�nr�∑
t=1

un�t = n−1/2
�nr�∑
t=1

Xt−hεt for r ∈ [0�1]�

so Un ∈ D
k
[0�1], where D

k
[0�1] denotes the space of cadlag mappings from the unit

interval to R
k. In the canonical case, Un will converge to a Brownian motion.

The Brownian limit leads to additional simplifications regarding the limit dis-
tribution, which we detail in Section 3. For now, we only need to make the
following high-level assumption on Un(

t
n
), as the Brownian limit is not needed

to establish the equivalence of test statistics.

ASSUMPTION 2: Let Mt = 1
t+h

∑t

s=1Xs−hX ′
s−h. Then as n→ ∞,

sup
r∈[ρ�1]

∥∥∥∥∥
�nr�∑

t=nρ+1

U ′
n

(
t − h
n

)(
M−1

t−h −Σ−1
)
un�t

∥∥∥∥∥ = op(1)�(6)

sup
r∈[ρ�1]

∥∥∥∥∥1
n

�nr�∑
t=nρ+1

U ′
n

(
t − h
n

)(
M−1

t−hXt−hX ′
t−hM

−1
t−h −Σ−1

)
Un

(
t − h
n

)∥∥∥∥∥(7)

= op(1)�
and supr∈[0�1] ‖Un(r)‖ =Op(1).

The convergences in (6) and (7) were obtained by Clark and McCracken
(2001) under mixing and moment assumptions that guarantee a Brownian limit
of Un; see also Clark and McCracken (2000) and McCracken (2007, pp. 745–
746).

2.1. Comparison With No-Change Forecast

Consider first the simple case where the forecasts from the regression
model (1) are compared to the trivial forecast ỹt|t−h = 0. Define the quadratic
form statistic

Sn =
n∑
t=1

ytX
′
t−h

(
n∑
t=1

Xt−hX ′
t−h

)−1 n∑
t=1

Xt−hyt�
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OUT-OF-SAMPLE FORECAST COMPARISONS AND WALD STATISTICS 2489

This is similar to the explained sum-of-squares in regression analysis—the dif-
ference being that the explanatory variables, Xt−h, are not demeaned.

THEOREM 1: Given Assumptions 1 and 2,

n∑
t=nρ+1

[
y2
t − (

yt − ŷt|t−h(β̂t−h)
)2] = Sn − Snρ + κ logρ+ op(1)�

where κ= tr{Σ−1Ω}.

Next, consider

Wn = σ̂−2
ε β̂

′
n

(
n∑
t=1

Xt−hX ′
t−h

)
β̂n�(8)

where σ̂2
ε is a consistent estimator of σ2

ε . This is a simple Wald statistic associ-
ated with the hypothesis H0 : β= 0. Since Wn = σ̂−2

ε Sn, Theorem 1 shows that,
aside from the scaling by σ̂−2

ε , the first two terms on the right hand side in The-
orem 1 are closely related to conventional Wald statistics—one based on the
full sample of n observations, the other based on the initial nρ observations.

Note that the Wald statistic in (8) is “homoscedastic” although we have not
assumed the underlying processes to be homoscedastic. Theorem 1 shows that
	MSEn is related to the “homoscedastic” Wald statistics for testing H0 : β= 0,
regardless of whether the underlying process is homoscedastic and regardless
of whether β= 0 or not. As the reader may recall, if the underlying process is
heteroscedastic, then, under the null hypothesis (β= 0) and standard regular-

ity conditions,Wn
d→ ∑k

i=1 λiχ
2
i as n→ ∞, where λ1� � � � � λk are the eigenvalues

of σ−2
ε Σ

−1Ω∞ and χ2
1� � � � �χ

2
k are independent χ2-distributed random variables

with one degree of freedom; see, for example, White (1994, Theorem 8.10).
Another interesting relation to notice is that if Ω=Ω∞, these eigenvalues are
related to the constant in Theorem 1, κ, as

κ= σ2
ε

k∑
i=1

λi�

The expression in Theorem 1 suggests the following estimator of κ: κ̂(ρ) =
[∑n

t=nρ+1 y
2
t − (yt − ŷt|t−h(β̂t−h))2 − Sn + Snρ]/ logρ. This estimator can be com-

bined with a consistent estimator of σ2
ε , to inspect whether the homoscedastic-

ity assumption, which implies k= κ(ρ)/σ2
ε for all ρ ∈ (0�1), is valid.
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2490 P. R. HANSEN AND A. TIMMERMANN

2.2. Comparison of Arbitrary Pairs of Regression-Based Forecasts

Next, consider general comparisons of pairs of regression models that
could be nested, nonnested, or overlapping. Analogously to the definitions for
model (1), introduce objects for model (2), σ−2

η , Σ̃, Ω̃, κ̃= tr{Σ̃−1Ω̃}, and define

S̃n =
n∑
t=1

ytX̃
′
t−h

(
n∑
t=1

X̃t−hX̃ ′
t−h

)−1 n∑
t=1

X̃t−hyt�

To simplify the exposition, we write ỹt|t−h and ŷt|t−h in place of ỹt|t−h(δ̂t−h) and
ŷt|t−h(β̂t−h).

COROLLARY 1: Suppose that Assumptions 1 and 2 hold for both models. Then

n∑
t=nρ+1

(yt − ỹt|t−h)2 − (yt − ŷt|t−h)2(9)

= Sn − Snρ − (S̃n − S̃nρ)+ (κ− κ̃) logρ+ op(1)�
The corollary shows that the difference in the MSE of the two regres-

sion models can be expressed in terms of linear combinations of two pairs of
quadratic form statistics—one based on the full sample, the other based on the
initial estimation sample—that test β = 0 and δ = 0, respectively. This result
holds regardless of the values of β and δ.

The equivalence stated by Corollary 1 is demonstrated by the scatter plots
in Figure 1, where the expression based on the S-statistics on the right hand
side of (9) is plotted against 	MSEn for a number of data generating processes
(DGPs). Additional simulation results are presented in the Supplemental Ma-
terial; see Hansen and Timmermann (2015b).

2.3. Nested Regression Models

Sharper results can be established for the special case in which one of the
regression models is nested by the other. This case arises when X̃t =X1t , where
Xt = (X ′

1�t�X
′
2�t)

′ withX1t ∈R
k̃ andX2t ∈R

q, so that k= k̃+q. We decompose
β accordingly, that is, β= (β′

1�β
′
2)

′. The case with nested models was studied
by McCracken (2007), who considered the test statistic

Tn =

n∑
t=nρ+1

(yt − ỹt|t−h)2 − (yt − ŷt|t−h)2

σ̂2
ε

�(10)

where σ̂2
ε is a consistent estimator of σ2

ε = var(εt+h).
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OUT-OF-SAMPLE FORECAST COMPARISONS AND WALD STATISTICS 2491

FIGURE 1.—Scatter plots of the terms on the right hand side in (9) (excluding the op(1) term
and using q = κ − κ̃) against 	MSEn. The plots are based on 1,000 simulations and assume
n = 500 and ρ = 0�5. The six DGPs are based on those in Clark and McCracken (2005) and
include cases with homoscedastic (DGP 1 and DGP 2), heteroscedastic (DGP 3 and DGP 4), and
serially dependent errors (DGP 5 and DGP 6). See the Supplemental Material for details.
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2492 P. R. HANSEN AND A. TIMMERMANN

Corollary 1 is directly applicable to this statistic. However, we can use a well-
known identity for Wald statistics involving nested hypotheses to simplify the
expression. To this end, we partition Σ into blocks

Σ=
(
Σ11 •
Σ21 Σ22

)
�

where Σ22 is a q×q matrix. Define Σ̌= Σ22 −Σ21Σ
−1
11 Σ12. This matrix is positive

definite as a consequence of Assumption 1. Next, define the auxiliary variables

Zt =X2�t −Σ21Σ
−1
11X1�t� t + h= 1� � � � � n�

The variable Zt captures that part of X2t that is orthogonal to X1t . Also define

Ω̌=
h−1∑

j=−h+1

Γ̌j� with Γ̌j = plim
n→∞

1
n

n∑
t=1

Zt−hεtεt−jZ′
t−h−j�

The residuals obtained from regressing X2�t−h on X1�t−h are given by

Zn�t−h =X2�t−h −
n∑
t=1

X2�t−hX ′
1�t−h

(
n∑
t=1

X1�t−hX ′
1�t−h

)−1

X1�t−h�

t = 1� � � � � n�

These can be used to compute the statistic

Šn =
n∑
t=1

ytZ
′
n�t−h

(
n∑
t=1

Zn�t−hZ′
n�t−h

)−1 n∑
t=1

Zn�t−hyt�

Šn measures that part of the variation in yt that is explained by X2�t−h, but
unexplained by X1�t−h. It is straightforward to verify that W̌n = Šn/σ̂

2
ε is a con-

ventional (homoscedastic) Wald statistic associated with the hypothesis β2 = 0.

THEOREM 2: Given Assumptions 1 and 2, the out-of-sample test statistic in
(10) can be written as

Tn = W̌n − W̌nρ + σ−2
ε κ̌ logρ+ op(1)�

where κ̌ = κ − κ̃, which simplifies to κ̌ = tr{Σ̌−1Ω̌} if β2 = n−1/2b with b ∈ R
q

fixed.

The complex out-of-sample test statistic for equal predictive accuracy, Tn,
depends on sequences of recursive estimates. It is surprising that this is equiv-
alent to the difference between two Wald statistics, one using the full sample,
the other using the subsample t = 1� � � � � nρ.
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OUT-OF-SAMPLE FORECAST COMPARISONS AND WALD STATISTICS 2493

TABLE I

FINITE SAMPLE CORRELATION OF TEST STATISTICS (n= 200)a

ρ π = 1−ρ
ρ DGP 1 DGP 2 DGP 3 DGP 4 DGP 5 DGP 6

0.833 0.2 0.962 0.972 0.959 0.954 0.969 0.955
0.714 0.4 0.975 0.980 0.971 0.963 0.971 0.956
0.625 0.6 0.977 0.979 0.975 0.960 0.973 0.943
0.556 0.8 0.979 0.98 0.977 0.955 0.971 0.947
0.500 1.0 0.980 0.978 0.975 0.96 0.969 0.941
0.455 1.2 0.980 0.976 0.975 0.954 0.967 0.935
0.417 1.4 0.979 0.974 0.976 0.954 0.962 0.934
0.385 1.6 0.978 0.973 0.974 0.948 0.959 0.936
0.357 1.8 0.977 0.973 0.975 0.948 0.959 0.926
0.333 2.0 0.975 0.972 0.975 0.948 0.958 0.927

a Finite sample correlations between Tn and the expression based on Wald statistics in Theorem 2. The sample
size is n = 200, but the simulation design is otherwise identical to that in Figure 1. The results are based on 10,000
replications. The parameter, π = (1 − ρ)/ρ, is the notation used in Clark and McCracken (2005).

The results in Theorems 1 and 2 are asymptotic in nature, but the relation-
ship is very reliable in finite samples, as is evident from the simulations re-
ported in Table I which use n = 200 observations. Thus the correlations re-
ported in Table I are for out-of-sample statistics that are based on sums with
as few as 34 terms. The main source of differences between the recursive MSE
differences and the Wald statistics is estimation error in σ̂2

ε , because the two
Wald statistics employ sample variances based on different sample sizes, nρ
and n, respectively. In fact, the correlations between the expressions on the two
sides of Equation (9) in Corollary 1 exceed 0.995 across each of the simulation
experiments shown in Figure 1. Additional simulation results are presented in
the Supplemental Material.

3. SIMPLIFIED LIMIT DISTRIBUTION FOR NESTED COMPARISONS

This section turns to the limit distribution of Tn for comparisons of nested
models. The equivalence between the test statistics established above holds
without detailed distributional assumptions. Under standard assumptions used
to establish the limit distribution of Tn, the equivalence between Tn and Wald
statistics has interesting implications for the limit distribution and results in a
simplified expression.

For the asymptotic limit results, we shall rely on the following additional
assumption that is known to hold under standard regularity conditions used
in this literature, such as those in Hansen (1992) (mixing) or in De Jong and
Davidson (2000) (near-epoch).
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2494 P. R. HANSEN AND A. TIMMERMANN

ASSUMPTION 3:

1√
n

�nr�∑
t=1

Zt−hεt ⇒ Ω̌1/2
∞ B(r) on D

q
[0�1]�

where B(r) is a standard q-dimensional Brownian motion.

Assumption 3 requires that certain linear combinations of Un(r) converge to
a Brownian motion with covariance matrix Ω̌∞, which is defined analogously
to Ω∞ as the long-run variance of {Zt−hεt}.

For the special case where h = 1 and forecast errors are homoscedastic,
McCracken (2007) showed that the asymptotic distribution of Tn is given as
a convolution of q independent random variables, each with a distribution of
2
∫ 1
ρ
u−1B(r)dB(r) − ∫ 1

ρ
u−2B(r)2 dr. Results for the case with h > 1 and het-

eroscedastic errors were derived in Clark and McCracken (2005).
The relation between Tn and Wald statistics implies that existing expres-

sions for the limit distribution of Tn can be greatly simplified and general-
ized to cover the case with local alternatives. To this end, we need to in-
troduce Q, defined by Q′ΛQ = Ξ, Q′Q = I, where Ξ = σ−2

ε Ω̌
1/2
∞ Σ̌

−1Ω̌1/2
∞ and

Λ= diag(λ1� � � � � λq).

THEOREM 3: Suppose that Assumptions 1–3 hold. Let β2 = cn−1/2b for some
vector, b, normalized by b′Σ̌b = σ2

εκ, and c ∈ R. Define a = b′Σ̌Ω̌−1/2
∞ Q′ ∈ R

q.
Then

Tn
d→

q∑
i=1

λi

[
2
∫ 1

ρ

r−1Bi(r)dBi(r)−
∫ 1

ρ

r−2B2
i (r)dr(11)

+ (1 − ρ)c2 + 2cai
{
Bi(1)−Bi(ρ)

}]
�

where B = (B1� � � � �Bq)
′ is a standard q-dimensional Brownian motion. More-

over, the limit distribution is identical to that of
q∑
i=1

λi
[
B2
i (1)− ρ−1B2

i (ρ)+ logρ+ (1 − ρ)c2 + 2aic
{
Bi(1)−Bi(ρ)

}]
�

The contributions of Theorem 3 are twofold. First, the theorem establishes
the asymptotic distribution of Tn under local alternatives (c �= 0), thereby gen-
eralizing the results in Clark and McCracken (2005) who showed results for
c = 0.4 Second, it simplifies the expression of the limit distribution from one

4The expression in Clark and McCracken (2005) involves a q × q matrix of nuisance param-
eters. For the case c = 0, this expression was simplified by Stock and Watson (2003) to that in
(11).
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OUT-OF-SAMPLE FORECAST COMPARISONS AND WALD STATISTICS 2495

involving stochastic integrals to one involving (dependent) χ2(1)-distributed
random variables, B2

i (1) and ρ−1B2
i (ρ). Below, we further simplify the limit

distribution under the null hypothesis to an expression involving differences
between two independent χ2-distributed random variables.

THEOREM 4: Let B be a univariate standard Brownian motion. The distribu-
tion of 2

∫ 1
ρ
r−1BdB− ∫ 1

ρ
r−2B2 dr is identical to that of

√
1 − ρ(Z2

1 −Z2
2)+ logρ,

where Zi ∼ i.i.d. N(0�1).

Theorems 3 and 4 show that the limit distribution of Tn/
√

1 − ρ is invariant
to ρ under the null hypothesis, whereas the noncentrality parameter,

√
1 − ρc2,

and hence the power of the test, is decreasing in ρ. This property of the test
might suggest choosing ρ as small as possible to maximize power, although such
a conclusion is unwarranted because the result relied on ρ being strictly greater
than zero to ensure that (n−1

∑nρ
t=1Xt−hXt−h)−1 is bounded in probability and

β̂t is well behaved. Still, comparing the test with ρ = 0�75 to the test using
ρ= 0�25, the noncentrality parameter reveals that the former amounts to the
same loss in asymptotic power as discarding (1 − 1/

√
3) 42% of the sample,

a substantial loss of power.
The asymptotic results in Theorems 1–4 take the sample split, ρ, to be fixed,

but could be generalized to be uniform in ρ over some interval (a�b)⊂ [0�1].
Such results could be used to develop a test that is robust to mining over the
sample split, analogously to the results derived in Rossi and Inoue (2012).

Because the distribution is expressed in terms of two independent χ2-
distributed random variables, in the homoscedastic case where λ1 = · · · =
λq = 1 it is possible to obtain relatively simple closed-form expressions for the
limit distribution of Tn:

THEOREM 5: The density of
∑q

j=1[2
∫ 1
ρ
r−1Bj(r)dBj(r) − ∫ 1

ρ
r−2Bj(r)

2 dr] is
given by

fq(x)= 1√
1 − ρ2q�

(
q

2

)2 e
−|x−q logρ|/(2

√
1−ρ)

×
∫ ∞

0

(
u

(
u+ |x− q logρ|√

1 − ρ
))q/2−1

e−u du�

For q= 1 and q= 2, the expression simplifies to

f1(x)= 1

2π
√

1 − ρK0

( |x− logρ|
2
√

1 − ρ
)

and

f2(x)= 1

4
√

1 − ρ exp
(

−|x− 2 logρ|
2
√

1 − ρ
)
�
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2496 P. R. HANSEN AND A. TIMMERMANN

respectively, where K0(x) = ∫ ∞
0

cos(xt)√
1+t2

dt is the modified Bessel function of the

second kind.

For q = 2, the limit distribution is simply the noncentral Laplace distribu-
tion. The density for q= 1 is also readily available since K0(x) is implemented
in standard software.

4. CONCLUSION

We show that a test statistic that is widely used for out-of-sample compar-
isons of regression-based forecasts is asymptotically equivalent to a linear com-
bination of Wald statistics. This equivalence greatly simplifies the computation
of the test statistic based on recursively estimated parameters, regardless of
whether the models being compared are nested, overlapping, or nonnested.

For the case where the forecasts are based on nested regression models, we
provide further simplifications. In this case, the test statistics can be expressed
as the difference between two Wald statistics of the same null—one using the
full sample, the other using a subsample. Moreover, in the nested case, the limit
distribution can be expressed as a difference between two independent χ2-
distributions and convolutions thereof. We also derive local power properties
for the test which establish that the power of the test is decreasing in the sample
split fraction, ρ.

These results raise serious questions about testing the stated null hypoth-
esis for nested comparisons through out-of-sample forecasting performance.
Subtracting a subsample Wald statistic from the full sample Wald statistic di-
lutes the power of the test. Moreover, the test statistic, Tn, is not robust to
heteroscedasticity, which causes nuisance parameters to show up in its limit
distribution. In contrast, the conventional full-sample Wald test can easily be
adapted to the heteroscedastic case by using a robust estimator for the asymp-
totic variance of β̂2�n.

While tests of equal out-of-sample forecasting performance are not well
suited for testing simple parametric hypotheses such as (3), there may be other
reasons for using such tests. Specifically, interest may lie in testing which model
(or method) produces the best forecasting performance. Whether one fore-
casting model outperforms another model relies on the extent to which the
forecasts are influenced by parameter estimation error, and entails a differ-
ent null hypothesis than (3); see, for example, Hendry (1997) and Giacomini
and White (2006). Out-of-sample forecast evaluation provides insights into the
effect of estimation error on “real-time” forecasting performance in a manner
that is not reflected in conventional full-sample tests. Moreover, out-of-sample
methods can be useful in multiple comparison problems because spurious ev-
idence of significance due to “data mining” (overfitting) is less likely to arise
for out-of-sample than for in-sample comparisons; see Hansen and Timmer-
mann (2015a). In both cases, our analysis shows that such properties of out-of-
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OUT-OF-SAMPLE FORECAST COMPARISONS AND WALD STATISTICS 2497

sample tests come at the expense of power. Our results help econometricians
better decide which tests to use in a particular situation.

APPENDIX: PROOFS

We first prove a number of auxiliary results. To simplify the exposition, we
will occasionally write

∑
t , supt , and supr as short for

∑n

t=nρ+1, supnρ+1≤t≤n, and
supr∈[ρ�1], respectively.

LEMMA A.1: Let at and bt be matrices whose dimensions are such that the
product, atbt , is well-defined. Then, for l ≤m≤ n,

n∑
t=m+1

atbt =
n−1∑
t=m
(at − at+1)

t∑
s=l
bs + an

n∑
s=l
bs − am

m∑
s=l
bs

and

n∑
t=m+1

at(bt − bt−1)=
n−1∑
t=m
(at − at+1)bt + anbn − ambm�

PROOF:

n∑
t=m+1

atbt =
n∑

t=m+1

at

(
t∑
s=l
bs −

t−1∑
s=l
bs

)

=
n∑

t=m+1

at

t∑
s=l
bs −

n∑
t=m+1

at

t−1∑
s=l
bs

=
n∑

t=m+1

at

t∑
s=l
bs −

n−1∑
t=m
at+1

t∑
s=l
bs

=
n−1∑
t=m
(at − at+1)

t∑
s=l
bs + an

n∑
s=l
bs − am

m∑
s=l
bs�

The second result follows by

n∑
t=m+1

at(bt − bt−1)=
n−1∑
t=m
(at − at+1)

t∑
s=l
(bs − bs−1)

+ an
n∑
s=l
(bs − bs−1)− am

m∑
s=l
(bs − bs−1)
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2498 P. R. HANSEN AND A. TIMMERMANN

=
n−1∑
t=m
(at − at+1)(bt − bl−1)+ an(bn − bl−1)

− am(bn − bl−1)�

because all terms involving bl−1 cancel out. Q.E.D.

LEMMA A.2: Suppose that supρ≤r≤1 ‖ 1
n

∑�rn�
t=1 (ζn�t − ζ)‖ = op(1) and that an�t ,

t = nρ� � � � � n, is such that an�n and
∑n−1

t=nρ |an�t − an�t+1| are both O(1). Then

1
n

n∑
t=nρ+1

an�tζn�t =
(

1
n

n∑
t=nρ+1

an�t

)
ζ + op(1)�

PROOF: Let ζ̃n�t = (ζn�t − ζ)/n and apply Lemma A.1 with l= 1, m= nρ,
n∑

t=nρ+1

an�t ζ̃n�t =
n−1∑
t=nρ
(an�t − an�t+1)

t∑
s=1

ζ̃n�s + an�n
n∑
s=1

ζ̃n�s − an�nρ
nρ∑
s=1

ζ̃n�s�

The second term is by assumptionO(1)op(1)= op(1), and similarly for the last
term because

|an�nρ | =
∣∣∣∣∣an�n +

n−1∑
t=nρ
(an�t − an�t+1)

∣∣∣∣∣ ≤ |an�n| +
n−1∑
t=nρ

|an�t − an�t+1|

= O(1)+O(1)�
The first term is bounded by

∑n−1
t=nρ |an�t − an�t+1| supnρ≤t<n ‖∑t

s=1 ζ̃n�s‖, which is
O(1)op(1)= op(1) by assumption. This completes the proof. Q.E.D.

In the present context, we often have an�t  ( t
n
)b, for some b ∈ R, with an�t

monotonic in t so that
∑n−1

t=nρ |an�t − an�t+1| = |an�nρ − an�n| =O(1), and

1
n

n∑
t=nρ+1

an�t =
∫ 1

ρ

rb dr =
{

1 − ρb+1 if b �= −1,
− logρ if b= −1.

This is illustrated in the following corollary.

COROLLARY 2: Given (5) of Assumption 1, we have

1
n

n∑
t=nρ+1

n

t
εt−jX ′

t−h−jΣ
−1Xt−hεt = −γj logρ+ op(1)�

where γj = tr{Σ−1Γj}.
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OUT-OF-SAMPLE FORECAST COMPARISONS AND WALD STATISTICS 2499

PROOF: We have
1
n

∑
t

εt−jX ′
t−h−jΣ

−1Xt−hεt = tr
{
Σ−1 1

n

∑
t

Xt−hεtεt−jX ′
t−h−j

}

= tr
{
Σ−1

∑
t

un�tu
′
n�t−j

}

= tr
{
Σ−1

(
Γj + op(1)

)}
�

where the last equality follows by Assumption 1(ii). The result now follows
by Lemma A.2 with ζn�t = εt−jX ′

t−h−jΣ
−1Xt−hεt = n tr{Σ−1un�tu

′
n�t−h}, ζ = γj =

tr{Σ−1Γj}, and an�t = n
t
, which meets the conditions of Lemma A.2 and is such

that 1
n

∑n

nρ+1 an�t =
∫ 1
ρ
r−1 dr + o(1)= − logρ+ o(1). Q.E.D.

LEMMA A.3: Suppose Ut = Ut−1 + ut ∈ R
q and let M be a symmetric q × q

matrix. Then 2U ′
t−1Mut =U ′

tMUt −U ′
t−1MUt−1 − u′

tMut .

PROOF: Rearranging the nonvanishing terms in

U ′
tMUt −U ′

t−1MUt−1 = (Ut−1 + ut)′M(Ut−1 + ut)′ −U ′
t−1MUt−1

and using u′
tMUt−1 =U ′

t−1Mut yields the result. Q.E.D.

LEMMA A.4: The following identity holds for 	MSE:
n∑

t=nρ+1

y2
t − (

yt − ŷt|t−h(β̂t−h)
)2 =A+ 2B+ 2C −D�

where

A=
∑
t

β′Xt−hX ′
t−hβ�

B= β′ ∑
t

Xt−hεt�

C =
∑
t

(β̂t−h −β)′Xt−hεt�

D=
∑
t

(β̂t−h −β)′Xt−hX ′
t−h(β̂t−h −β)�

PROOF: Let ξt = β′Xt and ϑt = (β̂t − β)′Xt , so that yt+h = εt+h + β′Xt =
εt+h + ξt and yt+h − ŷt+h|t = εt+h +β′Xt − β̂′

tXt = εt+h −ϑt . It follows that

y2
t+h − (yt+h − ŷt+h|t)2 = (εt+h + ξt)2 − (εt+h −ϑt)

2

= ξ2
t + 2ξtεt+h + 2ϑtεt+h −ϑ2

t �
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2500 P. R. HANSEN AND A. TIMMERMANN

which are the terms in the sums that define A, B, C, and D, respec-
tively. Q.E.D.

PROOF OF THEOREM 1: From the identity of Lemma A.4, the theorem fol-
lows by showing that

A+ 2B+ 2C −D= Sn − Snρ + κ logρ+ op(1)�
We first consider C, which is the most interesting term, and simplify by writing
Un�t in place of Un(

t
n
). It follows from (6) and Lemma A.2 with an�t = n

t
that

C =
n∑

t=nρ+1

n

t
U ′
n�t−hΣ

−1un�t + op(1)(A.1)

=
n∑

t=nρ+1

n

t
U ′
n�t−1Σ

−1un�t −
h−1∑
j=1

n∑
t=nρ+1

n

t
u′
n�t−jΣ

−1un�t + op(1)�

Applying Lemma A.3 to 2U ′
n�t−1Σ

−1un�t , we find

2C =
n∑

t=nρ+1

n

t

(
U ′
n�tΣ

−1Un�t −U ′
n�t−1Σ

−1Un�t−1

)
(A.2)

−
h−1∑

j=−h+1

n∑
t=nρ+1

n

t
u′
n�t−|j|Σ

−1un�t + op(1)�

From Corollary 2, we have that −∑n

t=nρ+1
n
t
u′
n�t−jΣ

−1un�t = γj logρ + op(1),
j = 1� � � � �h− 1, and since

κ= tr
{
Σ−1Ω

}
=

h−1∑
j=−h+1

tr

{
Σ−1

n∑
t=1

utu
′
t−h

}
+ op(1)=

h−1∑
j=−h+1

γj + op(1)�

and γj = γ−j , it follows that the contribution from the last term in (A.2) is
simply κ logρ+ op(1).

For the remainder of (A.2), we have

n∑
t=nρ+1

n

t

(
U ′
n�tΣ

−1Un�t −U ′
n�t−1Σ

−1Un�t−1

)
(A.3)

=U ′
n�nΣ

−1Un�n − n

nρ
U ′
n�nρ
Σ−1Un�nρ + 1

n

n−1∑
t=nρ

n

t

n

t + 1
U ′
n�tΣ

−1Un�t�
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OUT-OF-SAMPLE FORECAST COMPARISONS AND WALD STATISTICS 2501

where we used the second identity of Lemma A.1 with at = n
t

and bt =
U ′
n�tΣ

−1Un�t , so that

at − at+1 = n

t
− n

t + 1
= n

t(t + 1)
�

The last term of (A.3) offsets the contributions from −D, because

D= 1
n

n∑
t=nρ+1

(
n

t

)2

U ′
n�t−hM

−1
t−hXt−hX ′

t−hM
−1
t−hUn�t−h

= 1
n

n∑
t=nρ+1

(
n

t

)2

U ′
n�t−hΣ

−1Un�t−h + op(1)�

by (7) and Lemma A.2 with an�t = (n
t
)2. That the two terms offset each other

relies on

1
n

n∑
t=nρ+1

[
n

t

n

t + 1
−

(
n

t + h
)2]

U ′
n�tΣ

−1Un�t = op(1)�

using that supt |U ′
n�tΣ

−1Un�t | =Op(1) by the last part of Assumption 2 and that
1
n

∑n

t=nρ+1 | n
t
n
t+1 − ( n

t+h)
2| =O(n−1).

Next, A+ 2B equals

β′
n∑
t=1

Xt−hX ′
t−hβ−β′

nρ∑
t=1

Xt−hX ′
t−hβ+ 2n1/2β′Un�n − 2n1/2β′Un�nρ �

With Sm = β̂′
m[∑m

t=1Xt−hX ′
t−h]β̂m = (β̂m − β + β)′[∑m

t=1Xt−hX ′
t−h](β̂m −

β+β), we have

(Sn − Snρ)= U ′
n�nΣ

−1Un�n − n

nρ
U ′
n�nρ
Σ−1Un�nρ + op(1)(A.4)

+β′
n∑

t=nρ+1

Xt−hX ′
t−hβ+ 2n1/2β′(Un�n −Un�nρ)�

Q.E.D.

PROOF OF COROLLARY 1: This follows from writing

(yt − ỹt|t−h)2 − (yt − ŷt|t−h)2

= {
y2
t − (yt − ŷt|t−h)2

} − {
y2
t − (yt − ỹt|t−h)2

}
�

where y2
t is the squared prediction error from the simple auxiliary (zero) fore-

cast. Q.E.D.
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2502 P. R. HANSEN AND A. TIMMERMANN

PROOF OF THEOREM 2: The first result follows from Corollary 1 and the
identity Qn = Q̃n + Q̌n. Let

A=
(
I −Σ−1

11 Σ12

0 I

)
�

Consider

κ= tr
{
Σ−1Ω

} = tr
{(
A′ΣA

)−1
A′ΩA

} = tr
{(
Σ11 0
0 Σ̌

)
A′ΩA

}
�

so that

κ= tr
{
Σ−1

11Ω11

} + tr
{
Σ̌−1Ω22·1

}
�

where Ω22·1 = (−Σ21Σ
−1
11 � I)Ω(−Σ21Σ

−1
11 � I)

′. Now recall that Ω = ∑h−1
j=−h+1 Γj

where Γj = plim 1
n

∑n

t=1Xt−hεtεt−jX ′
t−h−j , so that the terms that make up Ω22·1

are given from plim 1
n

∑n

t=1Zt−hεtεt−jZ
′
t−h−j , proving thatΩ22·1 = Ω̌. Hence, the

result holds provided that

plim
1
n

n∑
t=1

X1�t−hεtεt−jX ′
1�t−h−j = plim

1
n

n∑
t=1

X1�t−hηtηt−jX ′
1�t−h−j�

j = 0� � � � �h− 1�

which would imply Ω11 = Ω̃. Since ηt = εt + β′
2Zt−h, the result follows when

β2 = n−1/2b, with b fixed. Q.E.D.

PROOF OF THEOREM 3: We establish the result by showing that the two
expressions for the limit distribution are identical. Then we derive the limit
distribution for the difference between the two Wald statistics and use their
relation with Tn.

Consider F(r)= 1
r
B2(r)− log r (for r > 0). By Ito stochastic calculus,

dF = ∂F

∂B
dB+

[
∂F

∂u
+ 1

2
∂2F

(∂B)2

]
du

= 2
r
BdB− 1

r2B
2 dr�

so
∫ 1
ρ

2
r
BdB − ∫ 1

ρ
1
r2
B2 dr = ∫ 1

ρ
dF(r) equals F(1) − F(ρ) = B2(1) − log 1 −

B2(ρ)/ρ+ logρ.
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OUT-OF-SAMPLE FORECAST COMPARISONS AND WALD STATISTICS 2503

Next, consider W̌n − W̌nρ where, analogously to (A.4), σ̂2
ε(W̌n − W̌nρ) is equal

to

Šn − Šnρ = Ǔ ′
n�nΣ̌

−1Ǔn�n − n

nρ
Ǔ ′
n�nρ
Σ̌−1Ǔn�nρ + op(1)

+β′
2

n∑
t=nρ+1

Zt−hZ′
t−hβ2 + 2n1/2β′

2(Ǔn�n − Ǔn�nρ)

= B(1)′Ω̌1/2
∞ Σ̌

−1Ω̌1/2
∞ B(1)− ρ−1B(ρ)′Ω̌1/2

∞ Σ̌
−1Ω̌1/2

∞ B(ρ)

+ (1 − ρ)c2b′Σ̌b+ 2cb′Ω̌1/2
∞

[
B(1)−B(ρ)] + op(1)�

Under Assumption 3, we have Ǔn��nr� = n−1/2
∑�nr�

t=1 Zt−hεt ⇒ Ω̌1/2
∞ B(r).

Now, define B̃(r) =QB(r), another q-dimensional standard Brownian mo-
tion, and use that σ−2

ε b
′Σzzb= κ to arrive at

B̃(1)′ΛB̃(1)− ρ−1B̃(ρ)′ΛB̃(ρ)+ (1 − ρ)c2κ

+ 2cσ−2
ε b

′Ω1/2Q′[B̃(1)− B̃(ρ)]
=

q∑
i=1

λi
[
B̃2
i (1)− ρ−1B̃2

i (ρ)+ (1 − ρ)c2 + 2cai
[
B̃(1)− B̃(ρ)]]�

where we used that σ−2
ε b

′Ω̌1/2
∞ Q

′ = b′Σ̌Ω̌−1/2
∞ σ−2

ε Ω̌
1/2
∞ Σ̌

−1Ω̌1/2
∞ Q

′ = b′Σ̌Ω̌−1/2
∞ ×

ΞQ′ = b′Σ̌Ω̌−1/2
∞ Q′Λ = (a1λ1� � � � � aqλq). Since B̃ and B are identically dis-

tributed, the limit distribution may be expressed in terms of B instead
of B̃. Q.E.D.

PROOF OF THEOREM 4: Let B(r) be a standard one-dimensional Brownian
motion and define U = B(1)−B(ρ)√

1−ρ and V = B(ρ)√
ρ

, so that B(1)= √
1 − ρU +√

ρV .

Note that U and V are independent standard Gaussian random variables. Ex-
press the random variable B2(1)−B2(ρ)/ρ as a quadratic form:

(
√

1 − ρU + √
ρV )2 − V 2

=
(
U
V

)′ ( 1 − ρ √
ρ(1 − ρ)√

ρ(1 − ρ) ρ− 1

)(
U
V

)
�

and decompose the 2 × 2 symmetric matrix into Q′ΛQ, where Λ =
diag(

√
1 − ρ�−√

1 − ρ) (the eigenvalues) and

Q= 1√
2

⎛
⎝

√
1 + √

1 − ρ
√

1 − √
1 − ρ

−
√

1 − √
1 − ρ

√
1 + √

1 − ρ

⎞
⎠ �
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2504 P. R. HANSEN AND A. TIMMERMANN

so that Q′Q = I. Then the expression simplifies to
√

1 − ρ(Z2
1 − Z2

2) where
Z =Q(U�V )′ ∼N2(0� I). Q.E.D.

PROOF OF THEOREM 5: Let Z1�i�Z2�i, i = 1� � � � � q be i.i.d. N(0�1), so that
X = ∑q

i=1Z
2
1�i and Y = ∑q

i=1Z
2
2�i are both χ2

q-distributed and independent. The
distribution is given by the convolution

q∑
i=1

[√
1 − ρ(Z2

1�i −Z2
2�i

) + logρ
] = √

1 − ρ(X −Y)+ q logρ�

To derive the distribution of S =X −Y , where X and Y are independent χ2
q-

distributed random variables, note that the density of a χ2
q is

ψq(u)= 1{u≥0}
1

2q/2�
(
q

2

)uq/2−1e−u/2�

We are interested in the convolution of X and −Y , whose density is given by

fq(s)=
∫

1{u≥0}ψq(u)1{u−s≥0}ψq(u− s)du

=
∫ ∞

0∨s
ψq(u)ψq(u− s)du�

=
∫ ∞

0∨s

1

2q/2�
(
q

2

)uq/2−1e−u/2 1

2q/2�
(
q

2

)(u− s)q/2−1e−(u−s)/2 du

= 1

2q�
(
q

2

)
�

(
q

2

)es/2 ∫ ∞

0∨s

(
u(u− s))q/2−1

e−u du�

For s < 0, the density is 2−q�(q2 )
−2es/2

∫ ∞
0 (u(u− s))q/2−1e−u du. Using the sym-

metry about zero, we arrive at the expression

fq(s)= 1

2q�
(
q

2

)2 e
−|s|/2

∫ ∞

0

(
u
(
u+ |s|))q/2−1

e−u du�

When q= 1, this simplifies to f1(s)= 1
2πK0(

|s|
2 ), where Kk(x) denotes the mod-

ified Bessel function of the second kind. For q= 2, the expression for the den-
sity reduces to the simpler expression, f2(s) = 1

4e
−|s|/2, which is the density of

the Laplace distribution with scale parameter 2. Q.E.D.
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