
 Hansen and Timmermann: Comment 1 7

 handle these and other interesting extensions. This fact suggests
 that much work remains to be done for econometricians going
 forward.
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 1. INTRODUCTION

 The Diebold-Mariano (1995) test has played an impor-
 tant role in the annals of forecast evaluation. Its simplicity -
 essentially amounting to computing a robust /-statistic - and its
 generality - applying to a wide class of loss functions - made it
 an instant success among applied forecasters. The arrival of the
 test was itself perfectly timed as it anticipated, and undoubtedly
 spurred, a surge in studies interested in formally comparing the
 predictive accuracy of competing models.1

 Had the Diebold-Mariano (DM) test only been applicable to
 comparisons of judgmental forecasts such as those provided in
 surveys, its empirical success would have been limited given
 the paucity of such data. However, the use of the DM test to sit-

 uations where forecasters generate pseudo out-of-sample fore-
 casts, that is, simulate how forecasts could have been generated
 in "real time," has been the most fertile ground for the test. In
 fact, horse races between user-generated predictions in which
 different models are estimated recursively over time, are now
 perhaps the most popular application of forecast comparisons.

 While it is difficult to formalize the steps leading to
 a sequence of judgmental forecasts, much more is known
 about model-generated forecasts. Articles such as West (1996),
 McCracken (2007), and Clark and McCracken (2001, 2005)
 took advantage of this knowledge to analyze the effect of re-
 cursive parameter estimation on inference about the parameters
 of the underlying forecasting models in the case of nonnested
 models (West 1996), nested models under homoscedasticity
 (McCracken 2007) and nested models with heteroscedastic

 Trior to the DM test, a number of authors considered tests of forecast encom-

 passing, that is, the dominance of one forecast by another; see, for example,
 Granger and Newbold (1977) and Chong and Hendry (1986).

 multi-period forecasts (Clark and McCracken 2005). These pa-
 pers show that the nature of the learning process, that is, the
 use of fixed, rolling, or expanding estimation windows, matters
 to the critical values of the test statistic when the null of equal
 predictive accuracy is evaluated at the probability limits of the
 models being compared. Giacomini and White (2006) devel-
 oped methods that can be applied when the effect of estimation
 error has not died out, for example, due to the use of a rolling
 estimation window.

 Other literature, including studies by White (2000), Ro-
 mano and Wolf (2005), and Hansen (2005) considers forecast
 evaluation in the presence of a multitude of models, addressing
 the question of whether the best single model - or, in the case
 of Romano and Wolf, a range of models - is capable of beat-
 ing a prespecified benchmark. These studies also build on the
 Diebold-Mariano article insofar as they base inference on the
 distribution of loss differentials.

 Our discussion here will focus on the ability of out-of-sample
 forecasting tests to safeguard against data mining. Specifically,
 we discuss the extent to which out-of-sample tests are less sen-
 sitive to mining over model specifications than in-sample tests.
 In our view this has been and remains a key motivation for
 focusing on out-of-sample tests of predictive accuracy.
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 2. OUT-OF-SAMPLE TESTS AS A SAFEGUARD
 AGAINST DATA MINING

 The key advantage of out-of-sample comparisons of predic-
 tive accuracy emerges, in our view, from its roots in the over-
 fitting problem. Complex models are better able to fit a given
 dataset than simpler models with fewer parameters. However,
 the reverse tends to be true out-of-sample, unless the larger
 model is superior not only in a population sense-that is, when
 evaluated at the probability limit of the parameters-but also
 dominate by a sufficiently large margin to make up for the
 larger impact that estimation error has on such models.

 A finding that a relatively complex model produces a
 smaller mean squared prediction error (MSPE) than a simpler
 benchmark need not be impressive if the result is based on an
 in-sample comparison. In fact, if several models have been esti-
 mated it is quite likely that one of them results in a substantially
 smaller MSPE than that of a simpler benchmark. This holds
 even if the benchmark model is true. For out-of-sample tests the
 reverse holds: the simpler model has the edge unless the larger
 model is truly better in population. It is far less likely that the
 larger model outperforms the smaller model by pure chance in
 an out-of-sample analysis. As we shall see, in fact it requires
 far more mining over model specifications in out-of-sample
 experiments for there to be a sizeable chance of outperforming
 the benchmark by a "statistically significant" margin.

 To illustrate this important difference between in-sample and
 out-of-sample forecasting performance, consider the simple re-
 gression model

 Y = Xß + e , (1)

 where Y is an n x 1 vector, X is a fixed n x k matrix of predictors
 with X'X = /*, ß is h x 1, and e ~ N(0, /„). It follows that the
 least squares estimator of ß is ß = X'Y, and the (in-sample)
 residual sum of squares (RSS) is

 RSSin = Y'(In - XX')Y = e'ln - XX')e = e'e - e'XX'e.
 (2)

 Suppose instead that ß has been estimated from an independent
 sample

 Y = Xß + e,

 where now e ~ N(0, In) is independent of e. For this case the
 least squares estimator is given by ß = X'Y, and the resulting
 (out-of-sample) RSS is

 RSSout = (Y - Xß y (Y - Xß) = e'e + e'XX'e - le'XX'ê.
 (3)

 The RSS of the true model is RSS* = e'e regardless of the value
 of ß. Consequently, from (2) the in-sample overfit is given by

 rn = RSS* - RSSin = s'xx's ~ XÎ- (4)

 From (3) the corresponding out-of-sample overfit statistic is

 rout = RSS* - RSSout = -e'XX'e + le'XX'e . (5)

 Note that the first term is minus a -variable while the second

 term has mean zero since e and e are independent. Therefore,

 while the estimated model (over-) fits the in-sample data better
 than the true model, the reverse holds out-of-sample.2

 This aspect of model comparison carries over to a situation
 with multiple models. To illustrate this point, consider a sit-
 uation where K regressors are available and we estimate all
 possible sub-models with exactly k regressors so that the model
 complexity is fixed. Suppose that the MSPE of each of these
 models is compared to the true model for which ß = 0. Then

 Cx = max rjn, J (6) JGKCic J

 measures how much the best-performing model improves the
 in-sample RSS relatively to the benchmark. Here, denotes
 the number of different models arising from " K choose k " re-
 gressors. The equivalent out-of-sample statistic is

 Cļ = max 77'. J (7) j€KCk J

 For example, we might be interested in computing the proba-
 bility that the MSPE of one of the estimated models is less than
 RSS - A for some constant A. Not surprisingly, this probability
 is much smaller for out-of-sample forecast comparisons than
 for in-sample comparisons. Figures 1-4 displays these proba-
 bilities as a function of K and Ķ for the case where the constant,

 Ajt, is (arbitrarily) chosen to be the 5 % critical value of a /2-
 distribution. This choice of A* is such that the probability of
 finding a rejection is 5% with/: = K. The results fork = 1, 2, 3,
 and 4 are displayed in separate figures. Each figure has K along
 the jc-axis. K which determines the number of regression mod-
 els ( K choose k) to be estimated and the latter is shown on
 the secondary (lower) jc-axis. The graphs are based on 100,000
 simulations and a design where X'X = Ik and Y ~ N(0, /„)
 with n - 50 sample observations.

 Figures 1-4 reveal a substantial difference between the effect
 of this type of mining over models on the in-sample and out-of-
 sample results. In-sample (upper line), the probability of finding
 a model that beats the benchmark by more than A¿ increases
 very quickly as the size of the pool of possible regressors, K ,
 used in the search increases. By design, the size of the test is 5%

 only when k = K, that is, at the initial point of the in-sample
 graph. However, in each graph the rejection rate then increases
 to more than 70% when K = 25.

 Out-of-sample the picture is very different. The MSPE of the
 estimated model tends to be worse than that of the true model.

 Consequently, the probability that the estimated model beats
 the benchmark by more than A* is very small. In fact, it takes
 quite a bit of mining over specifications to reach even the 5%
 rejection rate, and the larger is k the less likely it is to find out-
 of-sample rejections. For instance, for a regression model with
 k = 4 regressors it takes a pool of K = 20 regressors for there
 the be a 5% chance of beating the benchmark by A4 = 9.49 or
 more. In other words, what can be achieved in-sample, with
 a single model with four explanatory variables, takes 4845
 models out-of-sample. This is part of the reason that out-of-
 sample evidence is more credible than in-sample evidence; it

 2Note that E(rin - 7out) = 2k ; this observation motivated the penalty term in
 Akaike's information criterion. After applying this penalty term to a model's
 in-sample performance it is less likely that the estimated model "outperforms"
 the true model in-sample.
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 Figure 1 . The figure shows the probability that ma *jeKck Tj > Ak, that is, the probability that one of more models outperform the benchmark
 by Ak or more, as a function of K , the total number of (orthogonal) predictors. The secondary x-axis shows the number of distinct regression
 models. The figure assumes k = 1.

 is far more impressive for a relatively complex model to out-
 perform a simpler benchmark out-of-sample than in-sample.
 Attributing such superior performance to mining across model
 specifications is a less convincing explanation out-of-sample,
 than it is in-sample.
 While out-of-sample tests of predictive accuracy can help
 safeguard against the worst excesses of in-sample data mining,
 such tests clearly raise other issues. First, the conclusion that out-
 of-sample tests safeguard against mining over models hinges
 on the assumption that the test statistic is compared against
 standard critical values, precisely as is the case for the Diebold-
 Mariano statistic. If, instead, larger models are "compensated"

 for their complexity, as advocated by Clark and West (2007),
 the argument in favor of out-of-sample comparisons is clearly
 not as forceful and other arguments for using out-of-sample
 comparisons is needed to justify their use.
 Another criticism that has been raised against out-of-sample
 tests is that they require choosing how to split the total data
 sample into an in-sample and an out-of-sample period. If the
 split point has been mined over, subject to keeping a minimum
 amount of data at both ends for initial estimation and out of

 sample evaluation, this can again lead to greatly oversized test
 statistics. For simple linear regression models Hansen and Tim-
 mermann (2012) found that the 5% rejection rate can be more

 Figure 2. The figure shows the probability that ma XjeKck Tj > Ak, that is, the probability that one of more models outperform the benchmark
 by Ak or more, as a function of K, the total number of (orthogonal) predictors. The secondary jc-axis shows the number of distinct regression
 models. The figure assumes k = 2.
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 Figure 3. The figure shows the probability that maXjeKck 7) > Ak, that is, the probability that one of more models outperform the benchmark
 by A k or more, as a function of K, the total number of (orthogonal) predictors. The secondary jc-axis shows the number of distinct regression
 models. The figure assumes k = 3.

 than quadrupled as a result of such mining over the sample split
 point.

 3. WHEN TO USE AND NOT TO USE
 OUT-OF-SAMPLE TESTS

 Despite the widespread popularity of tests of comparative
 predictive accuracy, recent studies have expressed reservations
 about their use in formal model comparisons. Such concerns
 lead Diebold to ask "Why would one ever want to do pseudo-out-
 of-sample model comparisons, as they waste data by splitting
 samples?" Indeed, the DM test was not intended to test that

 certain population parameters - specifically, the parameters of
 the additional regressors in a large, nesting model - are zero.
 As pointed out by Inoue and Kilian (2005) and Hansen and
 Timmermann (2013), the test is not very powerful in this regard
 when applied to out-of-sample forecasts generated by models
 known to the econometrician.

 Conversely, if interest lies in studying a model's ability to gen-
 erate accurate forecasts - as opposed to conducting inference
 about the model's population parameters - then out-of-sample
 forecasts can be justified. For example, Stock and Watson (2003,
 p. 473) write "The ultimate test of a forecasting model is its out-
 of-sample performance , that is, its forecasting performance in

 Figure 4. The figure shows the probability that ma *jeKck Tj > Ak, that is, the probability that one of more models outperform the benchmark
 by Ak or more, as a function of K, the total number of (orthogonal) predictors. The secondary x-axis shows the number of distinct regression
 models. The figure assumes k = 4.
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 " real time " after the model has been estimated . Pseudo out-
 of-sample forecasting is a method for simulating the real-time
 performance of a forecasting model"
 Out-of-sample forecast comparisons also have an important
 role to play when it comes to comparing the usefulness of dif-
 ferent modeling approaches over a given sample period based
 solely on data that were historically available at the time the
 forecast was formed. This is particularly true in the presence of
 model instability, a situation in which the recursive perspective
 offered by out-of-sample tests can help uncover periods during
 which a particular forecasting method works and periods where
 it fails; see Giacomini and Rossi (2009) and the survey in Rossi
 (2013) for further discussion of this point.

 4. CONCLUSION

 A powerful case remains for conducting out-of-sample fore-
 cast evaluations. Diebold writes "The finite-sample possibil-
 ity arises, however, that it may be harder, if certainly not
 impossible, for data mining to trick pseudo-out-of-sample
 procedures than to trick various popular full-sample
 procedures."

 As we showed, there is considerable truth to the intuition

 that it is more difficult to "trick" out-of-sample tests (com-
 pared against standard critical values) than in-sample tests since
 the effect of estimation error on the out-of-sample results puts
 large models at a disadvantage against smaller (nested) models.
 However, out-of-sample tests are no panacea in this regard -
 the extent to which out-of-sample forecasting results are more
 reliable than in-sample forecasting results depends on the di-
 mension of the model search as well as sample size and model
 complexity.

 While it is by no means impossible to trick out-of-sample
 tests in this manner, one can also attempt to identify spuri-
 ous predictability by comparing in-sample and out-of-sample
 predictability. For example, a finding of good out-of-sample
 predictive results for a given model is more likely to be spuri-
 ous if accompanied by poor in-sample performance, see Hansen
 (2010). In our view both in-sample and out-of-sample forecast
 results should be reported and compared in empirical studies

 so as to allow readers to benefit from the different perspectives
 offered by these tests.
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