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We introduce the realized exponential GARCH model that can use multiple realized volatility measures
for the modeling of a return series. The model specifies the dynamic properties of both returns and realized
measures, and is characterized by a flexible modeling of the dependence between returns and volatility.
We apply the model to 27 stocks and an exchange traded fund that tracks the S&P 500 index and find
specifications with multiple realized measures that dominate those that rely on a single realized measure.
The empirical analysis suggests some convenient simplifications and highlights the advantages of the new
specification.
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1. INTRODUCTION

The realized GARCH framework by Hansen, Huang, and
Shek (2012) provides a structure for the joint modeling of re-
turns {rt } and realized measures of volatility {xt }. In this arti-
cle, we introduce a new variant within this framework, called
the realized exponential generalized auto regressive conditional
(GARCH) model. Key features of this model include: (i) The
ability to incorporate multiple realized measures of volatility,
such as the realized variance and the daily range; (ii) A flexi-
ble modeling of the dependence between returns and volatility,
which is known to be empirically important—a result that is
confirmed in our empirical analysis of 27 liquid stocks and the
exchange traded index fund, SPY. The present article also con-
tributed to the literature with a number of empirical results. We
undertake an extensive empirical analysis that motivates sev-
eral refinements and simplifications of the model. We compare
a range of realized measures and show that the log-likelihood
for daily returns can be improved by the use of multiple real-
ized measures. This is true in-sample and out-of-sample. The
empirical analysis also highlights the advantages of the new
specification, and we provide theoretical insight about the un-
derlying reasons for this.

GARCH models are time-series models that specify the con-
ditional distribution of the next period’s observation—typically
a return on some financial asset. The key variable is the con-
ditional variance that is defined by past variables. Conven-
tional GARCH models, such as the auto regressive conditional
heteroscedasticity (ARCH) by Engle (1982) and GARCH by
Bollerslev (1986), rely exclusively on daily returns (typically
squared returns) for the modeling of volatility. A shortcom-
ing of conventional GARCH models is the fact that returns are
rather weak signals about the level of volatility. This makes
GARCH models poorly suited for situations where volatility
“jumps” to a new level over a short period of time. In such
a situation, a GARCH model will be slow at “catching up,”
so that it takes several periods for the conditional variance

(implied by the GARCH model) to reach the new level, see
Andersen et al. (2003) for discussion on this. Incorporating
realized measures into GARCH models can greatly alleviate
this problem.

A wide range of realized measures of volatility has been pro-
posed in the literature since Andersen and Bollerslev (1998)
showed that such measures can be very useful for the evaluation
of volatility models. Realized measures of volatility, such as the
popular realized variance, are computed from high-frequency
data, see Andersen et al. (2001) and Barndorff-Nielsen and
Shephard (2002). The realized variance is sensitive to market mi-
crostructure noise, which has motivated the development of ro-
bust realized measures, such as the two-scale and multi-scale es-
timator by Zhang, Mykland, and Aı̈t-Sahalia (2005) and Zhang
(2006), respectively, the realized kernel by Barndorff-Nielsen
et al. (2008), the realized range by Christensen and Podolskij
(2007), see also Andersen, Dobrev, and Schaumburg (2008),
Hansen and Horel (2009), and references therein. Because real-
ized measures are far more informative about the current level
of volatility than the squared return, it can be very useful to
include such in the modeling of volatility. The economic and
statistical gains from incorporating realized measures in volatil-
ity models are typically found to be large, see, for example,
Christoffersen et al. (2014) and Dobrev and Szerszen (2010).
Following the early work by Andersen and Bollerslev (1998)
that had documented the value of using realized measures in
the evaluation of volatility models, Engle (2002) explored the
idea of including the realized variance as a predetermined vari-
able in the GARCH equation, and found it to be highly signif-
icant and greatly enhancing the empirical fit, see also Forsberg
and Bollerslev (2002). The first complete model (complete in
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the sense of specifying the dynamic properties of all observed
time-series) was introduced by Engle and Gallo (2006), who
referred to the model as a multiplicative error model (MEM).
The MEM framework operates with multiple latent volatility
processes—one for returns and one for each of the realized
measures. This structure is also the basis for the model pro-
posed by Shephard and Sheppard (2010), who referred to their
model as the HEAVY model. See also Visser (2011) and Chen,
Ghysels, and Wang (2011).

The realized GARCH framework takes a different approach.
Instead of introducing additional latent variables to the model,
the realized GARCH framework is based on measurement equa-
tions that tie the realized measure to the latent conditional vari-
ance. This facilitates an explicit modeling of leverage effect, and
circumvents the need for additional latent volatility processes.
The idea of using a measurement equation to tie the realized
measure to the latent volatility goes back to Takahashi, Omori,
and Watanabe (2009), who used it in the context of stochastic
volatility models. Additional MEM specifications have been ex-
plored and developed in Cipollini, Engle, and Gallo (2009) and
Brownless and Gallo (2010).

To illustrate the structure of a realized EGARCH model
and how it compares with conventional models, we give a
brief preview of our empirical result. Below we have estimated
the GARCH(1,1) by Bollerslev (1986), the EGARCH(1,1) by
Nelson (1991), a slightly modified EGARCH, and a realized
EGARCH model with daily returns, {rt }, on the S&P500 index
over the sample period spanning January 1, 2002 to December
31, 2013. The full details will be presented in Section 4. These
four models have the same return equation, rt = µ +

√
htzt

with zt ∼ iidN (0, 1), but their specifications for dynamic prop-
erties of the conditional variance, ht = var(rt |Ft−1), differ in
important ways. For the GARCH(1,1), the EGARCH(1,1), and
a variation of the latter, we estimated their GARCH equations to

ht+1 = +0.016
(0.003)

+ 0.987
(0.010)

ht + 0.085
(0.009)

(
r2
t − ht

)
,

log ht+1 = +0.014
(0.002)

+ 0.980
(0.003)

log ht − 0.136
(0.012)

zt

+ 0.110
(0.013)

(

|zt | −
√

2
π

)

,

log ht+1 = −0.002
(0.001)

+ 0.978
(0.003)

log ht − 0.132
(0.012)

zt + 0.036
(0.005)

(
z2
t − 1

)
,

respectively, where the numbers in brackets are standard error. In
comparison, a realized EGARCH model that uses two realized
measures leads to the following estimated GARCH equation:

log ht+1 = −0.005
(0.004)

+ 0.967
(0.003)

log ht − 0.147
(0.007)

zt + 0.0259
(0.003)

(
z2
t − 1

)

+ 0.278
(0.019)

uRK,t + 0.070
(0.010)

uDR,t .

The additional variables on the right-hand side, uRK,t and uDR,t ,
are given from the two (estimated) measurement equations:

log xRK,t = −0.525
(0.026)

+ log ht − 0.137
(0.007)

zt + 0.028
(0.004)

(
z2
t − 1

)

+uRK,t ,

log xDR,t = +0.437
(0.024)

+ log ht − 0.075
(0.014)

zt + 0.190
(0.009)

(
z2
t − 1

)

+uDR,t ,

which relate the realized measures, xRK,t and xDR,t , to the
conditional variance. The realized measures used here, xRK,t

and xDR,t , are the realized kernel for day t and the daily
(squared) range, respectively. In the likelihood analysis, the
bivariate vector, (uRK, uDR)′, is specified to be iid and Gaussian
distributed with mean zero and a variance-covariance matrix,
which is estimated to be

"̂ =
(

0.130 0.139

0.139 0.418

)

.

The realized measures contribute to modeling the volatility dy-
namics through the coefficients for uRK and uDR in the GARCH
equations. Both coefficients are significant but the realized
kernel is evidently more important for the volatility dynamics.
The structure of the estimated covariance matrix, "̂, shows
(not surprisingly) that the realized kernel is a far more accurate
measurement of the conditional variance than is the daily
range. The fact that the covariance is close to the variance of
uRK,t suggest that uDR,t ≃ uRK,t + ϵt , where ϵt is uncorrelated
with uRK,t .

The real benefits of including realized measures in the
GARCH modeling are revealed by comparing the value
of the log-likelihood function for daily returns. Note that
the likelihood for returns only constitutes one component
of the likelihood that is being maximized by the realized
EGARCH model. The full likelihood for the realized EGARCH
model also includes the likelihood related to the realized
measures.

In Table 1, we present the value of the log-likelihood func-
tions for four specifications. The first column presents the value
of the log-likelihood for returns over the full sample period. The
following two pairs of columns present in-sample and out-of-
sample log-likelihoods using two different sample splits. The
out-of-sample log-likelihood is simply the log-likelihood func-
tion computed with the out-of-sample data, but using the pa-
rameter estimates from the corresponding in-sample period. The
realized EGARCH model strongly dominates the conventional
GARCH models that rely exclusively on daily returns. Even
though the realized EGARCH model is maximizing a likelihood
for (rt , xRK,t , xDR,t )′, it does produce a much higher value of the
partial log-likelihood than the conventional GARCH models.
Out-of-sample we observe an even larger difference between
the log-likelihoods, as the realized EGARCH is 40–60 log-
likelihood points better than all of the conventional GARCH
specifications. This demonstrates the benefits of incorporating
realized measures in models for return volatility.

This article is organized as follows. We introduce the realized
exponential GARCH model in Section 2, and quasi-maximum
likelihood estimation (QMLE) and inference are discussed in
Section 3. Our empirical results are mainly presented in Section
4, and Section 5 compares the proposed specification to that in
Hansen, Huang, and Shek (2012) in terms of both theoretical
and empirical properties. We make some concluding remarks
in Section 6. Proofs are given in Appendix A, Appendix B has
some supporting empirical results, and Appendix C presents re-
sults for a generalized model where the innovations in the mea-
surement equation, ut , are modeled with ARCH and GARCH
features.
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Table 1. Log-likelihoods (for returns) for each of the models are reported for different sample periods, including two out-of-sample periods.
The full sample results in the first column are based on the period January 1, 2002, to December 31, 2013. The two subsequent pairs of columns
are in-sample and out-of-sample results based on a sample split 1

2 and 2
3 into the sample. The EGARCH is the original specification proposed in

Nelson (1991), the quadratic variant of the EGARCH performs similarly, but has the same leverage function as the realized EGARCH model

Full-sample In-sample Out-of-sample In-sample Out-of-sample

2002–2013 2002–2007 2008–2013 2002–2009 2010–2013
GARCH −4255.02 −1919.23 −2344.21 −2900.98 −1356.73
EGARCH −4183.69 −1888.65 −2312.13 −2859.58 −1329.02
EGARCH (quadratic) −4188.24 −1892.20 −2311.86 −2863.38 −1330.92
Realized EGARCH −4120.71 −1878.96 −2251.14 −2833.63 −1290.63

2. REALIZED EGARCH MODEL

In this section, we introduce the realized exponential GARCH
model (in short, realized EGARCH). We use this terminology
because the model shares some features with the EGARCH
model by Nelson (1991). The realized EGARCH model is well
suited for the case with multiple realized measures of volatility,
in which case we let xt denote a vector of realized measures,
xt = (x1,t , . . . , xK,t )′. Moreover, the model permits a more flex-
ible modeling of the joint dependence of returns and volatility.
The latter is shown to be very useful in our empirical analysis.
The vector of realized measures, xt , may include the realized
variance, bipower variation, daily range, squared return, and
robust measures such as the realized kernel.

Let {Ft } be a filtration so that (rt , xt ) is adapted to Ft , and
define the conditional mean, µt = E(rt |Ft−1), and conditional
variance, ht = var(rt |Ft−1). The realized EGARCH model with
K realized measures is given by the following equations:

rt = µt +
√

htzt ,

log ht = ω + β log ht−1 + τ (zt−1) + γ ′ut−1,

log xk,t = ξk + ϕk log ht + δ(k)(zt ) + uk,t , k = 1, . . . , K.

We refer to these as the return equation, the GARCH equation,
and the measurement equation(s), respectively. We discuss these
three equations in greater details below. In our quasi-likelihood
analysis, we adopt a Gaussian specification, zt ∼ N (0, 1) and
ut ∼ N (0,"), where zt and ut = (u1,t , . . . , uK,t )′ are mutu-
ally and serially independent. The leverage functions, τ (z) and
δ(k)(z), k = 1, . . . , K, play an important role to make the inde-
pendence between zt and ut realistic in practice. In the empirical
analysis, we adopt quadratic form for the leverage functions,

τ (z) = τ1z + τ2(z2 − 1)

and δ(k)(z) = δk,1z + δk,2(z2 − 1), k = 1, . . . , K.

The leverage functions facilitate a modeling of the dependence
between return shocks and volatility shocks, which is empiri-
cally important, and the volatility shock, vt = E(log ht+1|Ft ) −
E(log ht+1|Ft−1), is given by vt = τ (zt ) + γ ′ut in this model.

The return equation is standard in GARCH models. The con-
ditional mean, µt , may be modeled with a GARCH-in-mean
specification or simply a constant. In fact, imposing the con-
straint µt = 0 can result in better out-of-sample fit relative to a
model based on an unrestricted µ. That is indeed what we find
in our empirical analysis.

The GARCH equation plays a central role in models of the
conditional variance, and a key feature of the realized EGARCH
model is the presence of a leverage function, τ (zt−1), in the
GARCH equation. The realized GARCH model in Hansen,
Huang, and Shek (2012) only includes a leverage function in
the measurement equation. The EGARCH model is often based
on τ (z) = az + b|z|. We prefer a polynomial specification for
τ for empirical reasons and because the likelihood analysis is
simplified by the fact that τ (z) is differentiable at zero. Another
key feature of the realized EGARCH model is the last term in
the GARCH equation. This term, γ ′ut−1, is the main channel by
which the realized measures drive expectations of future volatil-
ity up or down. The fact that ut is K-dimensional enables us to
use multiple realized measures of volatility. It is worth noting
that this GARCH equation specifies an AR(1) model for the con-
ditional variance, with innovations given by τ (zt−1) + γ ′ut−1.
Hence, the parameter β summarizes the persistence of volatility,
whereas γ represents how informative the realized measures are
about future volatility.

The measurement equation defines the link between the (ex-
post) realized measures of volatility and the (ex-ante) condi-
tional variance. An ex-post measure of volatility will differ from
the conditional variance for a number of reasons. One source
for this discrepancy is because realized measures are not perfect
measures of volatility. Empirical measures entail sampling error
and even the most accurate realized measures are known to have
nonnegligible sampling error in practice. Another source for the
discrepancy is due to difference between ex-post volatility and
ex-ante volatility, which we can label the volatility shock.

The three equations fully characterize the dynamic proper-
ties of returns and realized measures of volatility. So that the
model is complete in the sense that it fully specifies the dynamic
properties of both returns and the realized measures.

3. ESTIMATION AND INFERENCE

In this section, we discuss estimation and inference within
the quasi-maximum likelihood framework. The analysis largely
follows that in Hansen, Huang, and Shek (2012), but the fact that
the present framework allows for multiple realized measures and
the introduction of a leverage function in the GARCH equation
requires some modifications and extensions of the analysis in
Hansen, Huang, and Shek (2012).

We adopt a Gaussian specification by assuming zt ∼
iidN (0, 1) and ut ∼ iidN (0,"), with zt and ut independent.
Express the leverage functions as τ (zt ) = τ ′a(zt ) and δ(k)(zt ) =
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δ′
kb(zt ), k = 1, . . . , K , where a(zt ) and b(zt ) are known func-

tions of zt . In our empirical analysis, we use at = bt = (zt , z
2
t −

1)′. The initial value of the conditional variance, h1, is treated as
an unknown parameter. In Section 3.1, we show that the choice
for initial value is asymptotically negligible under reasonable
assumptions, a result that is analogous to that for conventional
GARCH models, see, for example, Francq and Zakoian (2010,
chap. 7).

So the parameters in the model are

θ =
(
h̃1, µ, λ′,ψ ′

1, . . . ,ψ
′
K

)′ and ",

where

λ = (ω,β, τ ′, γ ′)′ and ψk =
(
ξk,ϕk, δ

′
k

)′
, k = 1, . . . , K.

To simplify the notation, we write h̃t = log ht and x̃k,t =
log xk,t , and define

gt =
(
1, h̃t , a

′
t , u

′
t

)′
, and mt =

(
1, h̃t , b

′
t

)′
,

where at = a(zt ) and bt = b(zt ) . This enables us to express the
GARCH and measurement equations as

h̃t = λ′gt−1 and x̃k,t = ψ ′
kmt + uk,t , k = 1, . . . , K,

respectively.
The quasi-log-likelihood function is given by

ℓ(r, x; θ,"u) = −1
2

n∑

t=1

[
log(2π ) + h̃t + z2

t + K log(2π )

+ log(|"|) + u′
t"

−1ut

]
,

where zt = zt (θ ) = (rt − µ)/
√

ht and uk,t (θ ) = x̃k,t − ξk −
ϕkh̃t (θ ) − δ′

kb(zt (θ )). We estimate the model’s parameters by
maximizing the quasi-log-likelihood function, ℓ(r, x; θ,"),
with respect to θ and ". The log-likelihood function has a con-
venient structure, so that (partial) maximization with respect to
", for a given value of θ , has the simple solution:

"̂(θ ) = 1
n

n∑

t=1

ut (θ )ut (θ )′, (1)

where we have made explicit that ut depends on θ but,
importantly, does not depend on the covariance matrix ".
We can therefore simplify the maximization problem to
arg maxθ ℓ(r, x; θ, "̂(θ )), where

ℓ(r, x; θ, "̂(θ )) ∝ −1
2

n∑

t=1

[
log ht (θ ) + zt (θ )2]

− n

2
log det "̂(θ ),

and where we use the fact that
∑n

t=1 ut (θ )′"̂(θ )−1ut (θ ) =
tr{
∑n

t=1 "̂(θ )−1ut (θ )ut (θ )′} = nK, which does not depend on
θ .

To compute robust standard errors, we need to derive the
dynamic properties of the score and hessian. A key component
in this dynamics is the derivative of log ht+1 with respect to
log ht , which is stated next.

Lemma 1. Let ϕ = (ϕ1, . . . ,ϕK )′ and let D be the matrix
whose kth row is δ′

k , k = 1, . . . , K . Then ∂ log ht+1/∂ log ht =

A(zt ) and −2∂ℓt /∂ log ht = B(zt , ut ), where

A(zt ) = (β − γ ′ϕ) + 1
2

(
γ ′Dḃzt

− τ ′ȧzt

)
zt ,

B(zt , ut ) =
(
1 − z2

t

)
+ u′

t"
−1(Dḃzt

zt − 2ϕ
)
,

with ȧzt
= ∂a(zt )/∂zt and ḃzt

= ∂b(zt )/∂zt .

We obtain the following results for ḣλ,t = ∂h̃t

∂λ
and ḣµ,t = ∂h̃t

∂µ
,

which we use to simplify our expressions for the score function.

Lemma 2. ḣλ,t = ∂h̃t

∂λ
and ḣµ,t = ∂h̃t

∂µ
are given from the

stochastic recursions:

ḣλ,t+1 = A(zt )ḣλ,t + gt ,

ḣµ,t+1 = A(zt )ḣµ,t + (γ ′Dḃzt
− τ ′ȧzt

)h
− 1

2
t ,

for t ≥ 1 with ḣλ,1 = ḣµ,1 = 0.

Next we turn to the score that defines the first-order conditions
for the quasi-maximum likelihood estimators.

Theorem 1. The scores, ∂ℓ
∂θ

=
∑n

t=1
∂ℓt
∂θ

with θ = (h̃1,

µ, λ′,ψ ′
1, . . . ,ψ

′
K )′ and ∂ℓ

∂"−1 =
∑n

t=1
∂ℓt
∂"−1 are given from

∂ℓt

∂θ
= −1

2

⎛

⎜⎜⎜⎜⎜⎝

B(zt , ut )
∏t−1

s=1 A(zs)

B(zt , ut )ḣµ,t + 2[zt − u′
t"

−1Dḃzt
]h

− 1
2

t

B(zt , ut )ḣλ,t
−2"−1ut ⊗ mt

⎞

⎟⎟⎟⎟⎟⎠

and
∂ℓt

∂"−1
= 1

2
(" − utu

′
t ). (2)

From Lemma 1 and Theorem 1 it follows that

Corollary 1. The score function is a martingale differ-
ence process, provided that E(zt |Ft−1) = 0, E(z2

t |Ft−1) = 1,
E(ut |zt ,Ft−1) = 0, and E(utu

′
t |Ft−1) = ".

The first two conditions, E(zt |Ft−1) = 0 and E(z2
t |Ft−1) = 1,

translate into the conditional mean and variance for rt being cor-
rectly specified. The third condition, E(ut |zt ,Ft−1) = 0, is es-
sentially a requirement that δ(k) is sufficiently flexible to capture
the conditional mean: E(log xk,t − ξk − ϕk log ht |zt ,Ft−1) =
E(log xk,t − ξk − ϕk log ht |zt ) = δ(k)(zt ). The last requirement,
E(utu

′
t |Ft−1) = ", is a homoscedasticity assumption on ut .

This assumption is in line with the limit theory for realized
measures, which shows that their standard errors are roughly
proportional to their levels. In the heteroscedastic case where
E(utu

′
t |Ft−1) = " does not hold, this would only impact the

part of the score that relates to ".
The first-order conditions for " lead to the closed-form ex-

pression in (1), where ûk,t = uk,t (θ̂) = x̃k,t − ξ̂k − ϕ̂kh̃t (θ̂) −
δ̂′
kb(zt (θ̂)), k = 1, . . . , K . This expression reduces the complex-

ity of the optimization problem substantially.
The GARCH equation implies that log ht has the stationary

MA(∞) representation

log ht = βj log ht−j +
j−1∑

i=0

βj [τ (zt−1−i) + γ ′ut−1−i],
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so that ht has a stationary representation if |β| < 1. In the like-
lihood analysis, however, it is the random variable, A(zt ) =
(β − γ ′ϕ) + 1

2 (γ ′Dḃzt
− τ ′ȧzt

)zt , which shows up as the “au-
toregressive coefficient” in various expressions. This occurs be-
cause the derivative is taken while the observables (rt , xt ) are
held constant, and this phenomenon is well known from the
EGARCH model.

3.1 Influence of the Initial Value

We note that the effect that h1 has on the log-likelihood is
proportional to

∑n
t=1

∏t−1
s=1 A(zs), and that

∏t−1
s=1 A(zs) vanishes

in probability (exponentially fast) provided that

E log |A(zt )| < 0, (3)

because |
∏

s A(zs)| = exp n{ 1
n

∑
s log |A(zs)|} and 1

n

∑
s log

|A(zs)|
a.s.→ E log |A(zt )| by the law of large numbers. By

Jensen’s inequality, we observe that E|A(zt )| < 1 is a sufficient
condition for (3). In our empirical analysis, this condition is
satisfied in all the models we have estimated. For instance, the
estimated model for SPY close-to-close returns with the realized
kernel, xRK,t , has E|A(zt )| = 0.76, whereas the estimated model
using two realized measures, the realized kernel and the daily
range, has E|A(zt )| = 0.835. (Here the expectation is computed
using parameter estimates and a Gaussian specification for zt .)

3.2 Asymptotic Distribution of Estimators

A drawback of conventional GARCH models is that the
asymptotic analysis of estimators and their properties are rather
challenging. It took more than two decades to establish several
elementary results for some of the simplest models, see Boller-
slev and Wooldridge (1992), Lee and Hansen (1994), Lumsdaine
(1996), Jensen and Rahbek (2004), Straumann and Mikosch
(2006), Kristensen and Rahbek (2005, 2009), and references
therein. The asymptotic analysis of realized EGARCH model
is similarly complicated, so it is beyond the scope of this arti-
cle to fully establish the asymptotic theory for the estimators.
However, based on the theoretical results in this section, includ-
ing the martingale difference properties stated in Corollary 1,
it seems reasonable to conjecture the following about the limit
distribution, which we use to compute standard errors in our
empirical analysis.

Conjecture 1. The QMLE estimators

√
n

(
θ̂ − θ

vech("̂ −")

)
d→ N (I−1J I−1),

where J is the asymptotic variance of the score function and
I is (minus) the limit of Hessian matrix for the log-likelihood
function.

In practice, we rely on the expression (1) for estimating "̂,
and are mainly concerned with computing standard errors for

(elements of) θ̂ . Fortunately, I has a block diagonal structure
that simplifies the computation of standard errors for θ .

Theorem 2. Given the martingale difference conditions stated
in Corollary 1 and Conjecture 1,

√
n
(
θ̂ − θ

) d→ N
(
0, Î−1

θ Ĵθ Î−1
θ

)
.

In practice, we will use this simplification and compute stan-
dard errors for θ using Î−1

θ Ĵθ Î−1
θ , where Ĵθ will be based on

the analytical scores derived in Equation (2) and Îθ will be com-
puted from the numerical Hessian matrix of the log-likelihood
function.

3.3 Partial Log-Likelihood for Returns

To have a measure of fit that can be compared with conven-
tional GARCH models, we define

ℓP (r; θ ) = −1
2

n∑

t=1

[
log(2π ) + log(ht ) + (rt − µ)2/ht

]
,

which is the partial log-likelihood function (for the time se-
ries of returns). This quantity is the Kullback–Leibler measure
associated with the conditional distribution of returns. So this
measure is directly comparable to the log-likelihood obtained
from conventional GARCH models, such as the GARCH model
and the EGARCH model.

4. EMPIRICAL RESULTS

In this section, we present empirical results using returns and
realized measures for 27 liquidly traded stocks and an exchange-
traded index fund, SPY, which tracks the S&P 500 index. The
series assets coincide with those in Hansen, Huang, and Shek
(2012) with the exception that General Motors is omitted from
that analysis, due to its 2009 bankruptcy that effectively halted
trading of the company for more than a year.

The empirical results illustrate the (rather large) benefits of
using realized measures in this framework. For instance, the
log-likelihood for returns increases substantially when realized
measures are included in the modeling, and γ is found to be sig-
nificant for all realized measures. Models with multiple realized
measures lead to better empirical fits than those with a single
realized measure. The best combination of realized measures
appears to be the realized variance based on 2 min sampling
in conjunction with the daily range. We explore a number of
simplifications of the model structure and find ϕ = 1 is a use-
ful restrictions that improves the out-of-sample fit. Additional
results are presented in the next section where we show that
the exponential specification proposed in this article is supe-
rior to the original specification by Hansen, Huang, and Shek
(2012). Section 5 will also present theoretical insight about the
underlying reasons for this.

4.1 Data and Realized Measures

Our full sample spans the period from January 1, 2002, to
December 31, 2013. We present results for two out-of-sample
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periods with either a half or a third of the full sample. We
will present extensive out-of-sample results, based on an out-
of-sample period that spans the period from January 1, 2008,
to December 31, 2013, which is 50% of the full sample. The
results we obtained with the shorter out-of-sample period from
January 1, 2010, to December 31, 2013 (hence a longer in-
sample period) are similar. One of these results were included
in the introduction. Our data are an extended version of the data
that were analyzed by Hansen, Huang, and Shek (2012). The
present dataset is more than 50% longer than that in Hansen,
Huang, and Shek (2012), and we include additional realized
measures in the present analysis and make use of models with
different subsets of eight distinct realized measures. The realized
measures were kindly provide to us by Asger Lunde, and these
were computed from high-frequency data that were cleaned as
detailed in Barndorff-Nielsen et al. (2009).

We remove short trading days from our sample to avoid out-
liers that would result from the fact that the realized measures, on
such days, span a smaller percentage of daily volatility. Specifi-
cally, we removed the days where high-frequency data spanned
less than 20,000 sec. A typical trading day spans the 6.5 hr
(23,400 sec) from 9:30 a.m. to 4:00 p.m. This removes about
three daily observations per year, such as the day after Thanks-
giving Day and the days around Christmas.

4.1.1 Realized Measures of Volatility. We use eight real-
ized measures in our empirical analysis. These consist of the
realized kernel (RK) by Barndorff-Nielsen et al. (2008), the
daily range (DR), and six realized variances (RV) that differ in
terms of the sampling frequency of intraday returns (ranging
from 15 sec intraday returns to 20 min intraday returns).

A relatively simple realized measure of volatility is the sum of
squared intraday returns that is known as the realized variance.
By dividing some interval of time, [T0, T1] say, into n subinter-
vals, T0 = t0,n < t1,n < · · · < tn,n = T1, we can define the in-
traday returns, ri,n = pti,n − pti−1,n

. The realized variance is now
defined by RV(n)

t =
∑n

i=1 r2
i,n, and under ideal circumstances the

realized variance is consistent for the quadratic variation. (Note
that the quadratic variation is an ex-post measure of volatility,
as oppose to ht that is an ex-ante quantity.) However, it is well
known that market microstructure noise becomes increasingly
important as n → ∞, which makes the RV an unreliable mea-
sure of volatility when n is large, see Zhang, Mykland, and
Aı̈t-Sahalia (2005), Bandi and Russell (2008), and Hansen and
Lunde (2006).

The RK by Barndorff-Nielsen et al. (2008) is one of sev-
eral robust measures of volatility, and the variant derived in
Barndorff-Nielsen et al. (2011) is robust to general forms of
noise. In this article, we adopt the latter variant, which is given
by RK =

∑H
h=−H k( h

H+1 )γh, where k(x) is the Parzen kernel
and γh =

∑n
i=|h|+1 ri,nri−h,n. The exact computation of this es-

timator is described in Barndorff-Nielsen et al. (2009).
The daily range is defined by hight − lowt with hight =

maxs ps and lowt = mins ps , where pt is the logarithmic price
and the maximum and minimum are taken over observed prices
on the tth trading day. For the sake of convenience, we use the
squared daily range,

DRt = (hight − lowt )2,

because this transforms the range-measure to the same scale
as ht . When log-prices follow a Brownian motion with
(constant) variance ht , then log DRt ∼ N (0.85 + log h, 0.34)
whereas log(hight − lowt ) ∼ N (0.43 + 1

2 log h, 0.08), see Al-
izadeh, Brandt, and Diebold (2002, Table 1).

4.2 A Comparison of Realized Measure

First, we compare the performance of realized EGARCH
models that include a single realized measure and compare the
results for the eight realized measures. Later we explore the
benefits of using multiple realized measures simultaneously.
Results based on open-to-close returns are presented in Table 2,
Panel A, and the analogous results for close-to-close results are
presented in Panel B.

Interestingly, RV2m often delivers the best out-of-sample fit,
albeit in the case of SPY close-to-close returns, the best individ-
ual realized measure is the RK. Two realized measures, DR and
RV15s, stand out as inferior. In the case of the daily range, this is
explained by the DR being the most noisy measure of volatility,
which is also evident from it having the largest variance of ut . In
the case of RV15s, its weak out-of-sample performance can be
attributed to the RV15s being most sensitive to microstructure
noise, because it is sampled at the highest frequency, causing
it to be poor signal of the underlying integrated volatility. For
open-to-close SPY returns, the RV15s leads to a good in-sample
fit for returns. This may be because the SPY is the most actively
traded asset in our analysis, making microstructure noise less
of an issue. But even in this case, the RV15s falls short in terms
of the out-of-sample log-likelihood. Not surprisingly do we find
that the estimates for β are close to 1. This is true uniformly
across different stocks for all the different realized measures.

There is an inverse relationship between the coefficient of
residual measurement error, γ , and its variance σ 2

u (for indi-
vidual realized measures, we write σ 2

u in place of "). This is
logical because the more accurate is a realized measure, the
larger would we expect its coefficient in the GARCH equation
to be.

It makes little sense to compare the full log-likelihood
ℓ(r, x) for different realized measures, because these are log-
likelihoods for different time series. So we will focus on the
partial likelihood that is a measure of fit for the return data.
Figure 1 compares the realized EGARCH model with the con-
ventional EGARCH model in terms of the partial log-likelihood
value. The values reported are the average in-sample and out-
of-sample improvements in the partial log-likelihood for each
of the eight realized measures. The average is taken over the
28 assets. We note that all realized measures lead to better
in-sample and out-of-sample performance, which demonstrates
the value of incorporating realized measures in the modeling
of returns. The realized measures perform similarly in-sample,
with the exception of RV15s that yields a smaller gain over the
EGARCH model. Out-of-sample the RV2m performs best on
average, closely followed by RK and RV5min.

From inspecting the in-sample log-likelihoods, we notice an
inverted U-shape across the sampling frequencies for the real-
ized variances. As the sampling frequency increases, the like-
lihood tends to improve, until a certain point around 2–5 min
frequency, after which the average likelihood deteriorates. This
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Table 2. Results based on open-to-close returns (Panel A) and close-to-close returns (Panel B) for eight realized measures of volatility. The left
panel presents parameter estimates for SPY returns for four key parameters along with the value of the in-sample and out-of-sample partial
log-likelihood function for the case where the sample is split in the middle, January 1, 2008. Each row has the results for one of the eight

realized measures in our analysis. The right panel presents the corresponding results for the individual stocks, in the form of average point
estimate and average value of the log-likelihood function

Point estimates and log-likelihoods (SPY) Averages across all assets

Panel A: open-to-close returns

β γ ϕ σ 2
u ℓIS

P (r) ℓOS
P (r) β γ ϕ σ 2

u ℓIS
P (r) ℓOS

P (r)

RK 0.968 0.303 1.107 0.122 −1744.51 −1907.90 0.969 0.308 1.116 0.143 −2351.29 −2536.35
DR 0.972 0.146 0.878 0.352 −1775.59 −1951.76 0.978 0.124 1.060 0.346 −2352.03 −2548.08
RV15s 0.976 0.304 1.200 0.107 −1738.41 −1913.24 0.973 0.338 1.091 0.099 −2356.70 −2545.77
RV2m 0.971 0.266 1.117 0.143 −1741.66 −1906.51 0.972 0.291 1.105 0.143 −2351.34 −2532.84
RV5m 0.968 0.242 1.130 0.176 −1745.31 −1907.27 0.970 0.255 1.090 0.185 −2350.39 −2534.40
RV10m 0.968 0.219 1.120 0.211 −1744.76 −1907.32 0.971 0.214 1.081 0.237 −2351.08 −2537.85
RV15m 0.970 0.184 1.160 0.246 −1748.07 −1909.58 0.973 0.184 1.065 0.284 −2351.05 −2539.85
RV20m 0.971 0.186 1.080 0.266 −1744.01 −1906.91 0.974 0.165 1.064 0.321 −2351.89 −2539.43

Panel B: close-to-close returns
β γ ϕ σ 2

u ℓIS
P (r) ℓOS

P (r) β γ ϕ σ 2
u ℓIS

P (r) ℓOS
P (r)

RK 0.971 0.308 1.041 0.108 −1877.40 −2249.72 0.970 0.327 1.044 0.143 −2536.90 −2822.24
DR 0.977 0.104 1.100 0.414 −1877.94 −2278.81 0.980 0.121 1.000 0.428 −2537.98 −2839.90
RV15s 0.978 0.303 1.130 0.096 −1874.24 −2266.12 0.974 0.357 1.021 0.098 −2542.30 −2837.10
RV2m 0.973 0.264 1.052 0.130 −1875.47 −2257.41 0.972 0.308 1.036 0.143 −2537.13 −2819.23
RV5m 0.971 0.229 1.072 0.164 −1879.51 −2259.69 0.971 0.265 1.038 0.187 −2536.70 −2823.33
RV10m 0.972 0.199 1.055 0.201 −1878.13 −2256.50 0.972 0.220 1.027 0.242 −2537.28 −2823.64
RV15m 0.975 0.170 1.024 0.240 −1877.77 −2255.38 0.974 0.191 1.015 0.293 −2537.57 −2829.65
RV20m 0.975 0.158 1.015 0.265 −1877.51 −2253.07 0.975 0.171 1.007 0.333 −2538.37 −2827.62

result is consistent with the literature on market microstruc-
ture noise in high-frequency data, which has shown that the
mean square error (MSE) of the realized variance, as a func-
tion of the sampling frequency, has a U-shape. The U-shape

arises because the distortions induced by market microstruc-
ture noise increase with the sampling frequency. This distortion
eventually dominates the statistical gain from sampling more
frequently.

Figure 1. Results for the realized EGARCH model based on each of the eight realized measures. We report the gains in the in-sample and
out-of-sample partial log-likelihood relative to that of the conventional EGARCH model. The values reported are the average gain over 28
assets. All realized measures lead to better in-sample and out-of-sample performance. The realized measures perform similarly in-sample, with
the exception of RV15s that is somewhat worse on average. Out-of-sample the RV2m performs best on average, closely followed by RK and
RV5min.
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4.3 Detailed Results for Realized Exponential GARCH
With the Realized Kernel

We shall present more detailed results for the realized
EGARCH model based on the RK. The following are the results
for SPY open-to-close returns for the full sample period:

rt = +0.004
(0.013)

+
√

htzt

log ht+1 = −0.014
(0.003)

+ 0.970
(0.003)

log ht − 0.101
(0.007)

zt + 0.044
(0.004)

(
z2
t − 1

)

+ 0.375
(0.020)

ut

log xRK,t = −0.164
(0.030)

+ 1.086
(0.029)

log ht − 0.092
(0.007)

zt + 0.059
(0.004)

(
z2
t − 1

)

+ut ,

with σ̂ 2
u = 0.137

(0.004)
. The numbers in parentheses are the robust

standard errors for each of the point estimates.
Estimating the same specification for SPY close-to-close re-

turns yields:

rt = +0.030
(0.015)

+
√

htzt

log ht+1 = −0.005
(0.004)

+ 0.970
(0.004)

log ht − 0.151
(0.008)

zt + 0.027
(0.004)

(
z2
t − 1

)

+ 0.372
(0.020)

ut

log xRK,t = −0.522
(0.026)

+ 0.999
(0.027)

log ht − 0.148
(0.007)

zt + 0.025
(0.004)

(
z2
t − 1

)

+ut ,

with σ̂ 2
u = 0.131

(0.003)
.

The estimates are quite similar, with the exception of the inter-
cept parameter in the measurement equation, ξ , which is smaller
for close-to-close returns than for open-to-close returns. This is
to be expected because it is the same realized kernel estimate
that is used in both specification, with the implication that xRK,t

is a downward biased measurement of ht , when the latter is the
daily close-to-close volatility. The fact that the coefficient on ut ,
γ , is significant shows that the realized measure (RK) provides
valuable information about the variation in volatility, over and
above that explained by studentized returns, zt . We also observe
that the coefficients for zt are smaller (more negative) for close-
to-close returns, which suggests a higher degree of asymmetry
in the leverage effect. The estimate of the mean parameter, µ, is
close to zero for open-to-close returns and only slightly positive
for close-to-close returns.

The point estimates for each of the assets based on close-
to-close returns are presented in Table 3. The analogous re-
sults for open-to-close returns are similar and can be found in
Table A.1 in Appendix A. The last row of Table 3 has the average
estimates across all assets, and it is interesting to observe how
similar the point estimates are across assets. Not surprisingly,

Table 3. Estimates for the realized EGARCH model based on the realized kernel (RK) for close-to-close returns.
Full sample: January 1, 2002, to December 31, 2013

Stocks µ ω β γ τ1 τ2 ξ ϕ δ1 δ1 σ 2
u

AA −0.007 0.044 0.972 0.344 −0.051 0.039 −0.490 1.040 −0.056 0.063 0.141
AIG −0.030 0.048 0.969 0.541 −0.074 0.045 −0.357 0.897 −0.035 0.052 0.202
AXP 0.050 0.013 0.986 0.390 −0.083 0.041 −0.383 0.990 −0.059 0.065 0.157
BA 0.068 0.022 0.978 0.302 −0.059 0.036 −0.449 1.056 −0.048 0.079 0.144
BAC 0.004 0.026 0.977 0.534 −0.081 0.043 −0.388 0.944 −0.060 0.046 0.167
C −0.021 0.038 0.971 0.477 −0.084 0.078 −0.341 0.941 −0.061 0.076 0.159
CAT 0.058 0.032 0.973 0.369 −0.056 0.015 −0.584 1.105 −0.064 0.040 0.136
CVX 0.055 0.020 0.966 0.342 −0.078 0.037 −0.345 1.113 −0.104 0.045 0.125
DD 0.037 0.021 0.971 0.412 −0.075 0.022 −0.225 0.968 −0.067 0.046 0.149
DIS 0.054 0.016 0.981 0.326 −0.074 0.023 −0.347 1.006 −0.073 0.050 0.153
GE 0.018 0.013 0.982 0.406 −0.060 0.024 −0.324 0.985 −0.037 0.045 0.160
HD 0.045 0.017 0.980 0.380 −0.058 0.026 −0.248 0.957 −0.041 0.050 0.145
IBM 0.027 0.012 0.973 0.423 −0.073 0.012 −0.374 0.983 −0.061 0.035 0.137
INTC 0.020 0.033 0.973 0.474 −0.050 0.018 −0.281 0.912 −0.034 0.032 0.128
JNJ 0.032 −0.005 0.977 0.344 −0.066 0.038 −0.110 0.970 −0.026 0.062 0.159
JPM 0.018 0.023 0.980 0.440 −0.087 0.057 −0.306 0.946 −0.057 0.063 0.144
KO 0.030 0.001 0.973 0.400 −0.065 0.028 −0.157 0.942 −0.047 0.060 0.150
MCD 0.059 0.006 0.984 0.296 −0.041 0.024 −0.297 1.041 −0.060 0.075 0.167
MMM 0.039 0.014 0.968 0.341 −0.078 0.009 −0.363 1.084 −0.068 0.040 0.153
MRK 0.026 0.022 0.972 0.329 −0.044 0.014 −0.493 1.090 −0.051 0.051 0.181
MSFT 0.031 0.026 0.968 0.449 −0.039 0.011 −0.392 1.000 −0.028 0.030 0.138
PG 0.025 −0.001 0.961 0.365 −0.060 0.024 −0.160 1.088 −0.051 0.056 0.157
T 0.033 0.012 0.975 0.394 −0.058 0.043 −0.153 0.976 −0.061 0.061 0.175
UTX 0.044 0.019 0.968 0.350 −0.101 0.037 −0.272 0.963 −0.055 0.066 0.149
VZ 0.026 0.010 0.979 0.322 −0.061 0.039 −0.192 1.030 −0.055 0.061 0.160
WMT 0.015 0.005 0.979 0.301 −0.035 0.027 −0.235 1.125 −0.027 0.059 0.142
XOM 0.040 0.016 0.967 0.350 −0.087 0.040 −0.285 1.087 −0.108 0.047 0.124
SPY 0.030 −0.005 0.970 0.372 −0.151 0.027 −0.522 0.999 −0.148 0.025 0.131

Average 0.029 0.018 0.974 0.385 −0.069 0.031 −0.324 1.008 −0.059 0.053 0.151
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do we find volatility to be highly persistent, which is evident
from the estimates of β, that are close to 1 in all cases. More-
over, the tables show that γ is typically estimated to be between
0.35 and 0.45. This parameter may be compared with α in a
conventional GARCH model, which measures the coefficient
associated with squared returns. The fact that γ is estimated to
be several times larger than the typical value for α (about 0.05)
reflects the fact that the realized kernel offers a stronger signal
about future volatility than does the squared return.

4.4 Simplifying the Structure Through Parameter
Restrictions

We seek ways to simplify the model by imposing parameter
restrictions that are not at odds with the data. There are several
advantages of imposing restrictions. For instance, it can ease the
interpretation of the model and can make the estimation of the
remaining parameters more efficient.

Imposing the restriction µ = 0 in the mean equation was
found to improve the average out-of-sample fit in the shorter
sample used in an earlier version of this article. For the longer
sample, we use in the present article, the average out-of-sample
fit is typically a tad better for the models where µ is unrestricted.
The difference can be explained by the longer in-sample period
that produces a more accurate estimate of µ. For this reason, we
do not impose µ = 0 in our empirical analysis. Nevertheless,
we recommend exploring this restriction in practice, in partic-
ular when the model is estimated with relatively short sample
periods.

Imposing the restriction: ϕ = 1 can be motivated by theoret-
ical considerations, specifically that the realized measures are
expected to be proportional to ht . Since we operate with log-
arithmically transformed quantities, this would naturally lead
to ϕ = 1. Imposing this constraint makes it easier to interpret
certain features of the model, so we examine the validity of this
restriction. We estimate the realized EGARCH model with each
of the eight realized measures and evaluate the effects on the
joint and partial log-likelihood functions by imposing the con-
straint ϕ = 1. The results are presented in Figure 2 where the left
panel displays the in-sample and out-of-sample effects on the
joint log-likelihood, and the results for the partial log-likelihood

are presented in the right panel. The numbers reported in the left
panel are ℓ(r, x; θ̃ , "̃) − ℓ(r, x, θ̂ , "̂) (average over the 28 as-
sets), where θ̃ and "̃ are the point estimates from the restricted
model (where ϕ = 1 is imposed), while θ̂ and "̂ are the point
estimates from the unrestricted model. The right panel presents
the equivalent statistics for the partial log-likelihood function.

Because the parameters are estimated by maximizing the joint
likelihood (in-sample), it is no surprise that the in-sample log-
likelihood decreases in value when ϕ = 1 is imposed. This is not
necessarily the case for the partial log-likelihood and, in fact,
the daily range provides an example where the in-sample partial
log-likelihood increases by imposing ϕ = 1. (The implication
is that the marginal in-sample log-likelihood for the realized
measures decreases more than the joint log-likelihood). The in-
teresting result in the left panel is that the restriction improves
the out-of-sample fit on average. We note that the out-of-sample
improvement is about 10 log-likelihood points, for both joint and
partial likelihoods. This implies that the gains from imposing
ϕ = 1 are primarily driven by gains in the partial log-likelihood
for returns, and less so by the part of the likelihood that relates
to the realized measure. This is obviously desirable if the key
objective is a better out-of-sample model for returns. We con-
clude that ϕ = 1 is a reasonable restriction to impose in this
framework.

4.5 Realized Exponential GARCH With Multiple
Realized Measures

In this section, we present empirical results for realized
EGARCH models using multiple realized measures. Models
using different combinations of realized measures have been
estimated for M = 2, 3, 4.

Seven realized EGARCH models are estimated with differ-
ent pairs of realized measures. We estimate two models with
three realized measures, where the labels (RK,DR,RV15s) and
(RK,DR,RV2m) identify which realized measures are included
in the model. We estimate three models with four realized mea-
sures: (RK,RV2m,RV5m,RV20m), (RK,DR,RV5m,RV20m),
and (RK,DR,RV15s,RV2m).

The results are reported in Table 4. The first and second
columns report the partial log-likelihood for the in-sample and

Figure 2. Gains in the joint and partial log-likelihoods by imposing ϕ = 1. While restrictions will reduce the value of the in-sample likelihood
we note that imposing ϕ = 1 leads to improvements in the out-of-sample log-likelihood. Improvements are observed for both the joint and the
partial log-likelihoods out-of-sample. The reported values are the average gains across all assets.
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Table 4. In-sample and out-of-sample partial log-likelihoods for
various specifications with one or more realized measures

Partial log-likelihood: Change in ℓ̄r relative
ℓ̄r (average over assets) to best specification

Specification IS OS IS OS

EGARCH −2550.10 −2858.71 −13.00 −51.02
RK −2539.02 −2811.80 −1.92 −4.12
DR −2537.57 −2831.32 −0.47 −23.64
RV15s −2546.55 −2825.49 −9.44 −17.80
RV2m −2539.47 −2808.60 −2.37 −0.91
RV5m −2538.55 −2812.15 −1.45 −4.46
RV10m −2538.60 −2814.54 −1.50 −6.86
RV15m −2538.77 −2820.88 −1.67 −13.19
RV20m −2539.28 −2820.10 −2.18 −12.41
RK,DR −2537.98 −2811.28 −0.88 −3.59
RK,RV15s −2549.53 −2834.44 −12.42 −26.76
RK,RV5m −2538.52 −2810.83 −1.42 −3.14
RV15s,RV5m −2546.75 −2827.03 −9.65 −19.35
RV5m,RV20m −2538.15 −2810.42 −1.04 −2.74
DR,RV5m −2537.17 −2810.99 −0.07 −3.30
DR,RV2m −2538.31 −2807.68 −1.21 0.00
RK,DR,RV15s −2548.23 −2834.21 −11.13 −26.52
RK,DR,RV2m −2537.80 −2809.76 −0.70 −2.08
RK,RV2m,RV5m,

RV20m
−2538.48 −2808.60 −1.38 −0.92

RK,DR,RV5m,
RV20m

−2537.10 −2811.21 0.00 −3.53

RK,DR,RV15s,
RV2m

−2547.94 −2833.69 −10.84 −26.01

NOTE: Best performing specification identified by boldface.

out-of-sample periods, respectively. The values reported are the
average results for the 28 assets. The last two columns report the
values of the log-likelihood relative to that obtained for the spec-
ification with the highest average value. In-sample, the largest
average partial log-likelihood is (not surprisingly) achieved by
a specification with four realized measures (RK, DR, RV5m,
and RV20m), whereas the simpler specification with two real-
ized measures, DR and RV2m, has the best out-of-sample fit on
average.

From the models with two realized measures, it is interesting
to note that including the realized range, DR, tends to improve
the out-of-sample likelihood, despite the fact that the DR alone
yields the worst out-of-sample performance. This suggests that
the daily range contains supplementary information to that pro-
vided by the realized kernel and the realized variances. For
models that include RV15s we see the exact opposite. When
RV15s is included in the specification, the out-of-sample fit
deteriorates substantially.

Comparing the out-of-sample partial log-likelihoods with
those of the univariate model, we find that incorporating multi-
ple realized measures does improve the value of the likelihood.
The results with M = 3 realized measures are similar to the case
of M = 2, with the exception being the case where we include
the noise-sensitive realized variance, RV15s.

Several specifications produce very similar in-sample and
out-of-sample log-likelihoods. Specifications that include either

realized kernel or RV2m in conjunction with the daily range de-
liver good overall performance, unless the noise-prone realized
variance, RV15s, is also included.

4.6 Model Diagnostics

In this section, we inspect some of the model assumptions for
the realized EGARCH model estimated with SPY returns and
the RK over the full sample.

The primitive assumptions required for the scores to be a
martingale difference were identified in Corollary 1. These as-
sumptions require the absence of autocorrelation in zt , z2

t , ut ,
and u2

t . Figure 3 presents the first 40 autocorrelations for all four
series. The shaded area are the 95% confidence bands based on
robust standard errors.

An immediate concern is the fact that the first-order auto-
correlations of all four series are significant at the 5% level.
While small in absolute values, many coefficients are signifi-
cant, owing in part to the large sample size with n = 3005 daily
observations.

For the case of zt and z2
t , we do not see more violations than

might be attributed to chance. Similar autocorrelations for zt

and z2
t were reported in Lunde and Olesen (2013), who applied

the realized EGARCH models to energy forward.
For the case of ut and u2

t , we see that about 10 of the first
40 autocorrelations are significant at the 5% level, and the as-
sumed constancy of σ 2

u is challenged by the fact that the first
25 autocorrelations of u2

t are positive. If we estimate σ 2
u year

by year from 2002 to 2013, we obtain the following subsam-
ple estimates: 0.08, 0.09, 0.10, 0.08, 0.12, 0.18, 0.17, 0.10,
0.16, 0.15, 0.15, and 0.17, which confirm time-variation in σ 2

u .
Corollary 1 shows that nonconstancy of σ 2

u only affects the
martingale difference properties of the part of the score that
relates to σ 2

u . So the constancy of σ 2
u is less critical for infer-

ence on other parameters. One possible way to model the time
variation in σ 2

u is to include a GARCH structure for ut . We
have explored this extension and found it to have little impact
on the estimated parameters, and on average it did not im-
prove the out-of-sample partial log-likelihood for returns, see
Appendix C.

Fortunately, the empirical correlations for the pairs (ut , zt )
and (ut , z

2
t ) are numerically equal to zero. We suspect that this

is a feature of the scores derived in Theorem 1, albeit it is not
immediately clear from the expressions.

Next we turn to the Gaussian assumptions used in the likeli-
hood estimation. Lunde and Olesen (2013) reported large devi-
ation from Gaussianity in their ẑt , that are deduced from energy
forward rates. Here, we find the Gaussian assumption to be less
at odds with our returns, see Figure 4. In the case of ut , the
empirical distribution has fatter tails than that of the normal
distribution, which can be attributed to the assumed constancy
of σ 2

u , which appears to be at odds with the data. In addition,
outliers in the realized measures, and/or outliers in zt that af-
fect ut through the leverage function δ(z) can result in outliers
for ut .

Overall, it appears that the realized EGARCH model with a
Gaussian specification, does a reasonably good job at modeling
the returns, but falls short in terms of properly describing the
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Figure 3. Autocorrelations (ACFs) in residuals and squared residuals along with 95% confidence bands, which are illustrated by the shaded
area. The ACFs and their robust standard errors were computed with Stata using the Bartlett command.

dynamic properties of the realized kernel. Primarily, because of
unmodeled time variation in σ 2

u .

5. RELATION TO EARLIER SPECIFICATION
IN HANSEN, HUANG, AND SHEK (2012)

In this section, we compare the realized exponential GARCH
specification with the earlier specification in Hansen, Huang,
and Shek (2012). The latter was formulated for a single realized

measure, so we focus on this special case in our comparison. The
logarithmic specification in Hansen, Huang, and Shek (2012)
takes the form:

log ht = ω̃ + β̃ log ht−1 + γ log xt−1,

log xt = ξ + ϕ log ht + δ(zt ) + ut .

Compared to the realized EGARCH specification, we note that
the GARCH equation has the realized measure, xt−1, instead of

Figure 4. QQ plots for ẑt and ût . The Gaussian specification is fairly reasonable for the case of zt , albeit a higher frequency of negative
returns is observed in the data, including an extreme outlier that occurred on February 27, 2007. This outlier has been associated a computer
glitch on the New York Stock Exchange on that day.
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ut−1, and lacks a leverage function, τ (zt−1). By substitution we
have

log ht = ω + βht−1 + γ δ(zt−1) + γut−1, (4)

where ω = ω̃ + γ ξ and β = β̃ + γ ϕ. It is now evident that this
model is nested in the realized EGARCH model, as the original
specification arises by imposing two restrictions: (i) Proportion-
ality of the two leverage functions, τ (z) = γ δ(z), and (ii) that
their relative magnitude is exactly γ (the coefficient for ut−1).
Our empirical analysis will highlight the benefits of relaxing
these constraints, and we will first provide some theoretical
insight about this below.

5.1 Interpreting the Generalized Structure

Before we present the empirical comparison of the two spec-
ifications, we will motivate the need for the more flexible struc-
ture of the realized EGARCH specification.

The realized measures, xt , are estimates of the quadratic vari-
ation, which we can denote by yt . For instance, the realized
kernel is consistent for yt as the number of intraday returns, n,
increases. In fact, the variant of the realized kernel used in this
article is such that xt − yt = Op(n−1/5) under suitable condi-
tions, see Barndorff-Nielsen et al. (2011). More generally, we
can view each of the realized measures as noisy measure of
yt with varying degrees of accuracy. This translates into log xt

being a noisy measure of log yt , with a bias that is influenced
by the sampling error of the realized measure. So we introduce
ηt = log xt − log yt and ζt = log yt − log ht and label these as
estimation error and volatility shock, respectively. While it is
plausible that the volatility shock influences the dynamics of
volatility, there is little reason to expect that the estimation error
has any impact on future volatility. This follows from the fact
that ηt is specific to the realized measure and simply reflects
our inability to perfectly estimate yt from a finite number of
observations.

From the measurement equation, assuming ϕ = 1, we have

ξ + δ(zt ) + ut = ηt + ζt .

This enables us to interpret ξ and relate δ(zt ) and ut to the
estimation error and the volatility shock. First, we note that ξ
is tied to the sampling error of the realized measure. For a re-
alized measure that is unbiased for yt , it follows by Jensen’s
inequality that a larger sampling error decreases Eηt . Thus, if
we compare two unbiased realized measures, we should ex-
pect the more accurate one to have the larger (less negative)
value of ξ . Second, since ηt is tied to sampling error that (in
the limit for some of the realized measures) is independent of
the observed processes, it follows that the leverage function,
τ (zt ), is linked to the volatility shock ζt , albeit there will be
residual randomness in ζt that cannot be explained by the stu-
dentized return, zt , alone. Consequently, the residual measure-
ment shock ut will be a mixture of the estimation error, ηt , and
the residual randomness ζt − δ(zt ). For this reason, we should
expect δ(zt ) to be more important in describing the dynamic
variation in volatility than ut . A limitation of the original re-
alized GARCH specification is that it implicitly imposes δ(zt )
and ut to have the same coefficient in the GARCH equation,
see (4).

5.2 Empirical Comparisons to Realized GARCH

Before comparing the realized GARCH and realized
EGARCH models, we estimate a hybrid model where we relax
the constraint that δ(zt ) and ut have the same coefficient in the
GARCH equation. This is achieved by imposing τ (z) = κδ(z)
in the GARCH equation of the EGARCH model, where κ is
a free parameter. The realized GARCH model corresponds
to the case κ = γ . Figure 5 presents average estimates of γ
and κ for the various realized measures, where the averages
were taken across assets. Across stocks we typically find the
value of γ to be much smaller than κ This can be seen in
the left panel, where γ is typically estimated to be about 50%
smaller than κ . This observation is consistent with our inter-
pretations of δ(zt ) and ut and their relations to estimation error
and volatility shocks. Detailed results for the individual stocks
are presented in the appendix. The right panel presents more
detailed results for the ratio of γ to κ , using standard box-
plots. The boxes identifies the first, second, and third quan-
tiles and the whiskers reveal the dispersion to the minimum and

Figure 5. Averaged estimates for γ and κ in the left panel. Right panel presents boxplots of the ratio γ̂ /κ̂ using the 28 estimates, one ratio
for each of the assets.
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Figure 6. Average impact on the joint and partial log-likelihoods from realized GARCH to realized EGARCH.

maximum value of the ratio, across the 28 assets in our empirical
analysis.

Naturally, the realized EGARCH model is more flexible than
merely allowing γ ̸= κ and Figure 6 presents likelihood ratio
statistics from the comparison of the realized EGARCH model
and the nested realized GARCH model over the full sample.
Results for the joint likelihood are in the left panel and the results
for the partial log-likelihood are in the right panel. We observe
substantial gains in the joint likelihood, gains that exceed what
can be attributed to chance. Recall that the realized EGARCH
model has just two additional parameters. The improvements
are also seen for the partial log-likelihood in most cases, but the
improvements are more modest. This shows that much of the
observed improvements in the joint likelihood can be attributed
to improved model fit of the realized measures.

Additional insight about the value of the realized EGARCH
structure is evident from the news impact curve. This curve
was introduced by Engle and Ng (1993), and is used to
illustrate the impact that return shocks has on volatility.
Figure 7 plots the impact that zt has on ht+1 measured in

percentages, as defined by E(log ht+1|zt = z) − E(log ht+1).
This news impact curve is simply given by τ (z), in the case
of the realized EGARCH model and the two variants of the
EGARCH model, and γ δ(z) in the case of the realized GARCH
model.

As is evident from Figure 7, the generalized structure of
the realized EGARCH model has profound effect on the news
impact curve, and results in a curve that is far more similar to
that of the EGARCH models.

The realized exponential GARCH model has been
applied in several empirical studies, since the model was
proposed in the first version of the present article. An ex-
tensive comparison of the realized GARCH model, in the
context of energy forward prices, is undertaking in Lunde
and Olesen (2013). They detailed how multi-period forecast-
ing can be conducted, either by simulating zt ∼ iidN (0, 1) and
ut ∼ iidN (0, "̂u), or by bootstrapping the residual (ẑt , û

′
t )

′,
see Lunde and Olesen (2013, sec. 6). Their empirical results
strongly support the realized EGARCH model, in particular,
at the longer horizons, such as 1 week ahead and 1 month

Figure 7. News impact curve for the realized EGARCH, realized GARCH, and the two variants of the conventional EGARCH model, which
were defined in the introduction.
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ahead forecasting, for a model that is estimated with daily
data.

6. CONCLUSION

We have introduced a new and improved variant of the real-
ized GARCH model, which is characterized by two innovations.
First, the new model includes an explicit leverage term in the
GARCH equation and second, the model enables the inclusion
of multiple realized measures in the modeling. The advantages
of the new structure were documented in the form of better em-
pirical fit in the time series we have analyzed. In our empirical
analysis, we also explored some simplifications and concluded
that ϕ = 1 is coherent with the data. This is useful because it
simplifies the interpretation of the model and facilitates a sim-
pler and more accurate estimation of the model.

We included and compared eight realized measures of volatil-
ity in the analysis, a realized kernel (RK), the daily range (DR),
and six realized variances, which were computed for various
sampling frequencies of intraday returns, ranging from 15 sec
returns to 20 min returns. Any of these realized measures contain
useful information for the modeling of volatility. The daily range
adds the least in terms of empirical fit, and the realized variance
based on 2 min sampling adds the most on average. For the re-
alized variances, we find, not surprisingly, that the performance
improves as the sampling frequency increases, except for the
highest sampling frequency where market microstructure noise
becomes a dominating factor. The realized variance based on
15 sec intraday returns, RV15s, can in some cases improve the
in-sample fit, even though the effects of market microstructure
noise are evident from the point estimates. Out-of-sample, how-
ever, the RV15s typically results in a disappointing fit that is
barely better than that of the daily range. The core of the prob-
lems is that the dynamic properties of RV15s are influenced by
features of the market microstructure noise, which causes the
RV15s to “hijack” the latent volatility variable, ht , to (partly)
track these noise features instead of the intended purpose, which
is to track the conditional volatility of returns.

The extension to multiple realized measures of volatility was
found to be beneficial. Not only does multiple realized measure
lead to substantial improvements of the empirical fit in-sample,
it also improves the out-of-sample fit. The latter implies that the
population benefits from adding multiple measures outweighs
the drawback from having to estimate additional parameters in
these models. In terms of the average out-of-sample fit of the log-
likelihood for returns, the best combination of realized measures
was one with two realized measures—the daily range paired
with the realized variance based on 2 min sampling. While the
daily range, in isolation, yields the smallest empirical gains of
all realized measures, it does contain valuable information that
is orthogonal to that of other realized measures. Given the con-
struction of the realized measures, it is perhaps, not surprising
that the daily range, albeit relatively noisy, does capture infor-
mation that is distinct from that contained in the other realized
measures.

Realized measures have proven to be very valuable in
GARCH modeling. When estimating a standard GARCH
model, the lagged squared returns are typically estimated to
have a coefficient around 5%, which causes GARCH models to

be slow at adjusting the level of volatility. Put simply, it takes
many consecutive large squared returns for a GARCH model to
realize that volatility has jumped to a new higher level. Including
a realized measure in the GARCH equation will typically lead
to its estimated coefficient to be estimated to about 35%–45%,
and the inclusion of the realized measures will often cause the
squared return to be insignificant. A larger coefficient associated
with the realized measure makes the model far more adaptive
to sudden changes in volatility, which has obvious benefits. For
instance, a realized GARCH model fares far better during the
financial crises than does a conventional GARCH model. De-
spite these benefits, it is important to be aware of a potential
drawback of the coefficient, γ , being relatively large. The larger
coefficient in the GARCH equation implies that an outlier in
the realized measure will cause more havoc to ht . This problem
is less pronounced in conventional GARCH models because α
is small. The key message we want to make is the following:
A larger coefficient in the GARCH equation requires a higher
degree of responsibility in terms of including well-behaved real-
ized measures of volatility. In our empirical analysis, we found
that additional data monitoring is required once realized mea-
sures are included in the model. For instance, we chose to ex-
clude “short” trading days (mostly days around Christmas and
Thanksgiving) from the analysis, because the realized measures
from such days are exceptionally small. Not only because the
period with high-frequency data is shorter, but also because such
days tend to be quiet day with relatively low levels of volatility.
Conventional GARCH models do not require the same degree
of careful monitoring, because an outlier in returns has a smaller
impact on the model-implied volatility.

Finally, the model proposed in this article included a single
lag of ht and ut in the GARCH equation. This framework is
easy to extend to include multiple lags of ht and ut , say p and
q lags, respectively. It would be natural to label this model as
the RealEGARCH(p, q) model, and the likelihood analysis in
Section 3 can be adapted to cover this case at the expense of a
more complex exposition.

The specification analysis in Section 4.6 revealed evidence
of heteroscedasticity in measurement equation’s innovations.
While this heteroscedasticity is not critical for the asymptotic
analysis, aside from the inference that concerns σ 2

u , one could
consider the generalized model structure to accommodate time
variation in σ 2

u . We have explored ARCH and GARCH structure
for ut , and did not find such to affect other parameter estimates,
nor did it improve the partial log-likelihood for returns.

APPENDIX A: APPENDIX OF PROOFS

Proof of Lemma 1. From zt = (rt − µ)e−h̃t /2, we have that

żt = ∂zt/∂h̃t = −1
2
zt . (A.1)

Similarly for uk,t = x̃t − ϕkh̃t − δ′
kb(zt ), we find that u̇k,t =

∂uk,t /∂h̃t = −ϕk − δ′
kḃt żt = 1

2 δ
′
kḃt zt − ϕk, so that u̇t = ∂ut/∂h̃t (the

column vector whose kth element is u̇k,t ) can be expressed as

u̇t = 1
2
Dḃtzt − ϕ. (A.2)
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Now recall, h̃t+1 = g′
tλ, where g′

t = (1, h̃t , a
′
t , u

′
t ). Thus the object we

seek is given by

(∂g′
t /∂h̃t )λ =

(
0, 1, żt ȧ

′
t , u̇

′
t

)
λ = β + żt ȧ

′
tτ

+
(

1
2
Dḃtzt − ϕ

)′

γ = A(zt ).

For the second result, −2 log ℓt /∂h̃t = [h̃t + z2
t + K log(2π ) +

log |"| + u′
t"

−1ut ]/∂h̃t , we note that ∂z2
t /∂h̃t = −z2

t using (A.1), and
the result now follows by combining ∂u′

t"
−1ut/∂u

′
t = 2u′

t"
−1 and

(A.2). !
Proof of Lemma 2. First we note that

zt = (rt − µ)e−h̃t /2 and uk,t = x̃t − ϕkh̃t − δ′
kb(zt ),

only depend on λ through h̃t (the latter directly and indirectly via zt ).
Consequently, g′

t = (1, h̃t , a
′
t , u

′
t ) only depends on λ through h̃t so that

∂h̃t+1/∂λ =

∂h̃t+1

∂λ
= λ′ ∂gt

∂h̃t

∂h̃t

∂λ
+ gt = A(zt )ḣλ,t + gt .

The second result is derived similarly, albeit with some additional terms
because zt (and hence ut ) depends on µ though another channel than
h̃t . Specifically,

żµ,t = ∂zt

∂µ
= −1

2
zt ḣµ,t − h

− 1
2

t ,

which has implications for u̇µ,t = ∂ut/∂µ so that

u̇µ,t = −ϕḣµ,t − Dḃt żµ,t =
(

−ϕ + 1
2
Dḃtzt

)
ḣµ,t + Dḃth

− 1
2

t

so that

ḣµ,t+1 = βḣµ,t + γ ′u̇µ,t + τ ′ȧt żµ,t

=
[
β − γ ′ϕ + 1

2
(γ ′Dḃt − τ ′ȧt )zt

]
ḣµ,t + (γ ′Dḃt − τ ′ȧt )h

− 1
2

t

and the result follows. !
Proof of Theorem 1. From Lemma 1, we have ∂h̃t+j

∂h̃t
=
∏j−1

i=0 A(zt+i),
and the first result follows by the chain rule. For µ, we note that µ
influences ℓt through h̃t and through its direct impact on zt , which is

the second term of żµ,t = ∂zt/∂µ = − 1
2 zt ḣµ,t − h

− 1
2

t so that

−2
∂ℓt

∂µ
= B(zt , ut )ḣµ,t + (−2∂ℓt /∂zt )

(
−h

− 1
2

t

)

= B(zt , ut )ḣµ,t + (2zt + 2u′
t"

−1∂ut/∂zt )
(

−h
− 1

2
t

)

= B(zt , ut )ḣµ,t + 2
[
zt + u′

t"
−1(− Dḃzt

)]
h

− 1
2

t ,

which establishes the second element of ∂ℓt
∂θ

. Next, λ only impacts ℓt

through h̃t so the third element of ∂ℓt
∂θ

follows by combining the results in
Lemmas 1 and 2. Next consider the derivatives with respect toψk , which
only affects ℓt through uk,t . Recall −2∂ℓt /∂ut = ∂(u′

t"
−1ut )/∂ut =

2"−1ut so that ∂(u′
t"

−1ut )/∂uk,t = 2e′
k"

−1ut , where ek is the kth unit
vector. Since ∂uk,t /∂ψk = −mt , we have

−2∂ℓt /∂ψk = 2e′
k"

−1ut (−mt )] = −2
(
e′
k"

−1ut

)
mt .

By using the fact that for vectors a ∈ Rn and b ∈ Rm, we have that

⎛

⎜⎜⎜⎜⎜⎜⎝

e′
1ab
...

e′
kab
...

e′
nab

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎝

a1b
...

akb
...

anb

⎞

⎟⎟⎟⎟⎟⎟⎠
= a ⊗ b.

It follows that −2∂ℓt /∂(ψ ′
1, . . . ,ψ

′
K )′ = ("−1ut ) ⊗ mt . !

Proof of Theorem 2. We first show the information matrix I is block
diagonal. For each i, j , k = 1, . . . ,K, we have

∂2ℓt

∂("−1)ij∂λ
= −1

2
(ui,t u̇j,t + uj,t u̇i,t )ḣt

∂2ℓt

∂("−1)ij∂ψk

= −1
2

(ui,tmk,j,t + uj,tmk,i,t ),

where mk,i,t= ∂ui,t

∂ψk
=mk,t when k = i and 0 otherwise. Hence, we have

E
[
∂2ℓ(r, x; θ,"−1)
∂("−1)ij∂λ

]
= E

[
n∑

t=1

−1
2

(ui,t u̇j,t + uj,t u̇i,t )ḣt

]

= 0,

E
[
∂2ℓ(r, x; θ,"−1)
∂("−1)ij∂ψk

]
= E

[
n∑

t=1

−1
2

(ui,tmk,j,t + uj,tmk,i,t )

]

= 0.

Since all cross terms are zero, the information matrix I is block
triangular, so that

avar(θ̂ , vech"̂) =
(
I−1
θ 0

0 I−1
"

)(
Jθ Jθ"
J"θ J"

)(
I−1
θ 0

0 I−1
"

)

=
(

I−1
θ JθI−1

θ I−1
θ Jθ"I−1

"

I−1
" J"θI−1

θ I−1
" J"I−1

"

)

.

We can see the asymptotic covariance matrix for θ̂ is just I−1
θ JθI−1

θ .
!
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APPENDIX B: ADDITIONAL EMPIRICAL RESULTS

Table B.1. Estimates for the realized EGARCH model based on the realized kernel (RK) for open-to-close returns.
Full sample: January 1, 2002, to December 31, 2013

Stocks µ ω β γ τ1 τ2 ξ ϕ δ1 δ1 σ 2
u

AA −0.113 0.037 0.969 0.324 −0.049 0.049 −0.183 1.094 −0.040 0.075 0.140
AIG −0.075 0.040 0.967 0.570 −0.078 0.042 −0.098 0.889 −0.027 0.045 0.209
AXP 0.043 0.009 0.986 0.378 −0.064 0.050 −0.147 1.037 −0.033 0.079 0.156
BA 0.020 0.014 0.979 0.283 −0.041 0.034 −0.161 1.150 −0.027 0.079 0.148
BAC −0.002 0.018 0.975 0.478 −0.074 0.078 −0.100 0.953 −0.048 0.088 0.155
C −0.077 0.029 0.968 0.463 −0.070 0.082 −0.100 0.991 −0.044 0.095 0.157
CAT −0.001 0.022 0.972 0.338 −0.050 0.050 −0.140 1.066 −0.042 0.073 0.133
CVX 0.020 0.008 0.968 0.363 −0.063 0.045 0.005 1.109 −0.076 0.061 0.129
DD 0.001 0.012 0.973 0.360 −0.055 0.037 −0.011 1.045 −0.048 0.068 0.147
DIS 0.063 0.010 0.981 0.310 −0.057 0.033 −0.057 1.104 −0.044 0.069 0.153
GE −0.018 0.007 0.979 0.350 −0.043 0.050 −0.018 1.044 −0.019 0.076 0.153
HD 0.031 0.013 0.978 0.334 −0.047 0.038 −0.090 1.076 −0.039 0.073 0.140
IBM 0.087 0.001 0.974 0.397 −0.058 0.038 0.037 0.989 −0.035 0.054 0.140
INTC −0.016 0.022 0.972 0.407 −0.045 0.051 0.027 0.985 −0.023 0.070 0.122
JNJ 0.025 −0.011 0.975 0.350 −0.045 0.033 0.159 1.046 −0.002 0.062 0.163
JPM 0.000 0.018 0.978 0.430 −0.066 0.061 −0.072 0.999 −0.042 0.080 0.142
KO 0.033 −0.006 0.972 0.367 −0.037 0.038 0.086 1.020 −0.025 0.073 0.152
MCD 0.041 0.002 0.986 0.288 −0.029 0.030 −0.001 1.014 −0.040 0.078 0.173
MMM 0.027 0.003 0.967 0.345 −0.056 0.021 0.011 1.092 −0.043 0.051 0.158
MRK 0.008 0.012 0.974 0.304 −0.031 0.017 −0.145 1.151 −0.030 0.054 0.188
MSFT 0.033 0.010 0.971 0.404 −0.045 0.052 0.080 0.948 −0.043 0.075 0.131
PG 0.068 −0.011 0.962 0.376 −0.047 0.027 0.117 1.052 −0.027 0.053 0.164
T −0.019 0.005 0.977 0.376 −0.045 0.041 0.092 0.985 −0.047 0.063 0.178
UTX 0.003 0.009 0.967 0.344 −0.074 0.039 0.009 1.025 −0.033 0.068 0.152
VZ −0.019 0.005 0.978 0.343 −0.043 0.041 0.054 1.040 −0.036 0.067 0.162
WMT 0.015 −0.001 0.978 0.312 −0.027 0.036 0.082 1.081 −0.009 0.068 0.145
XOM 0.051 0.005 0.968 0.363 −0.062 0.046 0.042 1.103 −0.072 0.061 0.128
SPY 0.004 −0.014 0.969 0.375 −0.101 0.044 −0.164 1.086 −0.093 0.059 0.138
Average 0.008 0.010 0.974 0.369 −0.054 0.043 −0.024 1.042 −0.039 0.068 0.152

APPENDIX C: GENERALIZATION WITH ARCH
AND GARCH STRUCTURES IN UT

The section with diagnostic analysis suggested the possibility of
time variation in the volatility of ut . In this section, we extend the
realized EGARCH model to accommodate ARCH/GARCH effects in
ut . This requires us to introduce an additional latent variable, hu

t , which
denotes the conditional volatility of ut . With a single realized measure,
we consider the following two GARCH equations for the innovations
in the measurement equation:

• Realized EGARCH with ARCH in ut

hu
t = ωu + αuu2

t−1

• Realized EGARCH with GARCH in ut

hu
t = ωu + αuu2

t−1 + βuhu
t−1.

It is straightforward to modify the likelihood function by replac-
ing the constant variance σ 2

u with time varying hu
t . While we no

longer have closed-form expressions for the score functions, it is still

a simple matter to obtain the maximum likelihood estimator by simple
maximization.

We present the estimated parameters for close-close returns of SPY
over the full-sample for the case where with realized kernel is used the
realized measure.

From the estimated models and the point estimates reported in Tables
C.1 and C.2 and the impact these extensions have on the log-likelihoods,
reported in Table C.3, we make the following observations:

• ARCH and GARCH effect are significant at the 5% level. This is
evident from the joint log-likelihoods and (unreported) t-statistics
for αu and βu.

• The volatility of ut , measured by the sum of αu + βu, on average,
is less persistent than the return volatility.

• Including the ARCH or GARCH effect in ut does not substantially
affect the estimates of other parameters in the models.

• The partial log-likelihood for returns is, on average, not improved
by adopting an ARCH or GARCH structure for ut .

Thus, for the purpose of modeling returns, there are no apparent
gains from adopting an ARCH/GARCH structure for ut .
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Table C.1. Estimates for the realized EGARCH model with ARCH effect in ut based on the realized kernel (RK) for close-to-close returns.
Full sample: January 1, 2002, to December 31, 2013

Stocks µ ω β γ τ1 τ2 ξ ϕ δ1 δ1 w2
u αu

AA −0.008 0.046 0.970 0.328 −0.052 0.042 −0.501 1.045 −0.056 0.064 0.130 0.077
AIG −0.031 0.048 0.966 0.525 −0.088 0.047 −0.329 0.874 −0.035 0.048 0.167 0.184
AXP 0.050 0.013 0.986 0.390 −0.085 0.042 −0.382 0.990 −0.060 0.064 0.150 0.040
BA 0.069 0.022 0.978 0.302 −0.059 0.036 −0.448 1.055 −0.047 0.079 0.142 0.009
BAC 0.000 0.028 0.975 0.499 −0.088 0.056 −0.394 0.948 −0.062 0.046 0.156 0.058
C −0.021 0.037 0.971 0.478 −0.086 0.079 −0.337 0.937 −0.061 0.075 0.152 0.047
CAT 0.058 0.033 0.972 0.360 −0.057 0.017 −0.590 1.109 −0.064 0.039 0.128 0.058
CVX 0.056 0.019 0.967 0.328 −0.078 0.038 −0.342 1.110 −0.105 0.047 0.114 0.085
DD 0.035 0.021 0.972 0.373 −0.073 0.030 −0.222 0.963 −0.067 0.049 0.131 0.128
DIS 0.056 0.015 0.982 0.318 −0.073 0.022 −0.345 1.002 −0.071 0.048 0.141 0.079
GE 0.016 0.011 0.984 0.361 −0.065 0.034 −0.340 0.999 −0.039 0.047 0.141 0.116
HD 0.044 0.017 0.980 0.369 −0.061 0.030 −0.249 0.958 −0.042 0.050 0.132 0.087
IBM 0.027 0.011 0.975 0.409 −0.073 0.013 −0.375 0.983 −0.061 0.036 0.130 0.053
INTC 0.020 0.030 0.975 0.458 −0.050 0.019 −0.285 0.913 −0.034 0.032 0.116 0.094
JNJ 0.032 −0.004 0.979 0.319 −0.063 0.037 −0.108 0.983 −0.026 0.063 0.145 0.090
JPM 0.018 0.022 0.980 0.435 −0.087 0.057 −0.303 0.944 −0.058 0.064 0.140 0.026
KO 0.031 0.002 0.975 0.385 −0.066 0.030 −0.156 0.957 −0.049 0.062 0.131 0.125
MCD 0.059 0.005 0.984 0.288 −0.038 0.023 −0.300 1.041 −0.058 0.075 0.154 0.076
MMM 0.040 0.014 0.969 0.333 −0.078 0.010 −0.362 1.083 −0.069 0.040 0.146 0.047
MRK 0.027 0.023 0.971 0.334 −0.044 0.015 −0.491 1.087 −0.050 0.051 0.170 0.066
MSFT 0.031 0.025 0.970 0.435 −0.041 0.014 −0.396 1.003 −0.028 0.031 0.128 0.075
PG 0.026 −0.002 0.963 0.373 −0.057 0.027 −0.163 1.103 −0.049 0.058 0.136 0.141
T 0.034 0.012 0.975 0.390 −0.058 0.045 −0.148 0.968 −0.061 0.063 0.164 0.061
UTX 0.045 0.019 0.968 0.350 −0.101 0.037 −0.271 0.962 −0.057 0.067 0.139 0.064
VZ 0.026 0.010 0.979 0.317 −0.060 0.039 −0.191 1.029 −0.054 0.061 0.155 0.027
WMT 0.016 0.005 0.977 0.302 −0.035 0.028 −0.233 1.118 −0.026 0.058 0.133 0.067
XOM 0.040 0.016 0.967 0.343 −0.086 0.041 −0.287 1.092 −0.108 0.048 0.118 0.050
SPY 0.030 −0.004 0.972 0.354 −0.148 0.027 −0.520 1.002 −0.146 0.025 0.122 0.071

Average 0.029 0.018 0.974 0.373 −0.070 0.033 −0.324 1.009 −0.059 0.053 0.140 0.075

Table C.2. Estimates for the realized EGARCH model with GARCH effect in ut based on the realized kernel (RK) for close-to-close returns.
Full sample: January 1, 2002, to December 31, 2013

Stocks µ ω β γ τ1 τ2 ξ ϕ δ1 δ1 w2
u αu βu

AA −0.008 0.046 0.971 0.328 −0.052 0.042 −0.492 1.040 −0.055 0.065 0.078 0.078 0.365
AIG −0.026 0.036 0.975 0.486 −0.079 0.039 −0.324 0.875 −0.033 0.048 0.023 0.100 0.789
AXP 0.049 0.014 0.986 0.388 −0.084 0.042 −0.380 0.989 −0.058 0.064 0.044 0.055 0.663
BA 0.069 0.022 0.977 0.300 −0.056 0.036 −0.445 1.052 −0.044 0.078 0.017 0.028 0.856
BAC 0.003 0.027 0.976 0.495 −0.084 0.053 −0.391 0.947 −0.060 0.044 0.017 0.046 0.852
C −0.016 0.031 0.975 0.457 −0.083 0.068 −0.310 0.919 −0.062 0.067 0.007 0.050 0.907
CAT 0.057 0.033 0.972 0.353 −0.056 0.019 −0.595 1.112 −0.063 0.039 0.051 0.066 0.558
CVX 0.056 0.019 0.967 0.337 −0.075 0.038 −0.338 1.100 −0.101 0.046 0.023 0.068 0.749
DD 0.035 0.020 0.972 0.376 −0.072 0.029 −0.226 0.968 −0.067 0.048 0.062 0.107 0.480
DIS 0.056 0.017 0.981 0.329 −0.071 0.023 −0.341 1.000 −0.069 0.047 0.059 0.090 0.526
GE 0.017 0.012 0.983 0.377 −0.059 0.030 −0.327 0.985 −0.036 0.044 0.021 0.053 0.818
HD 0.044 0.017 0.980 0.377 −0.059 0.030 −0.247 0.956 −0.040 0.051 0.014 0.044 0.858
IBM 0.027 0.011 0.973 0.414 −0.070 0.014 −0.373 0.974 −0.055 0.036 0.013 0.041 0.868
INTC 0.020 0.031 0.975 0.461 −0.049 0.019 −0.282 0.912 −0.034 0.031 0.020 0.058 0.789

(Continued on next page)
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Table C.2. Estimates for the realized EGARCH model with GARCH effect in ut based on the realized kernel (RK) for close-to-close returns.
Full sample: January 1, 2002, to December 31, 2013 (Continued)

Stocks µ ω β γ τ1 τ2 ξ ϕ δ1 δ1 w2
u αu βu

JNJ 0.033 −0.004 0.979 0.326 −0.060 0.036 −0.111 0.973 −0.025 0.061 0.020 0.046 0.829
JPM 0.020 0.022 0.981 0.434 −0.084 0.056 −0.296 0.937 −0.057 0.063 0.021 0.032 0.823
KO 0.031 0.002 0.973 0.391 −0.065 0.030 −0.156 0.946 −0.047 0.061 0.062 0.106 0.479
MCD 0.060 0.006 0.984 0.295 −0.039 0.023 −0.297 1.038 −0.058 0.074 0.075 0.066 0.487
MMM 0.040 0.014 0.968 0.343 −0.073 0.010 −0.356 1.068 −0.063 0.039 0.023 0.075 0.780
MRK 0.027 0.023 0.971 0.333 −0.039 0.017 −0.495 1.093 −0.048 0.053 0.036 0.071 0.731
MSFT 0.031 0.025 0.970 0.430 −0.037 0.012 −0.393 1.002 −0.026 0.029 0.017 0.063 0.817
PG 0.027 −0.003 0.964 0.367 −0.052 0.025 −0.165 1.087 −0.041 0.057 0.015 0.058 0.847
T 0.035 0.012 0.976 0.385 −0.054 0.044 −0.147 0.966 −0.060 0.066 0.019 0.054 0.840
UTX 0.045 0.019 0.967 0.353 −0.100 0.037 −0.266 0.955 −0.057 0.066 0.034 0.048 0.726
VZ 0.027 0.010 0.980 0.317 −0.059 0.038 −0.189 1.025 −0.051 0.062 0.019 0.024 0.859
WMT 0.015 0.006 0.977 0.303 −0.034 0.028 −0.232 1.114 −0.027 0.058 0.014 0.034 0.867
XOM 0.042 0.016 0.968 0.342 −0.083 0.041 −0.281 1.079 −0.108 0.046 0.012 0.040 0.866
SPY 0.030 −0.003 0.973 0.366 −0.138 0.028 −0.521 0.986 −0.136 0.024 0.006 0.043 0.908
Average 0.030 0.017 0.975 0.374 −0.067 0.032 −0.321 1.004 −0.057 0.052 0.029 0.059 0.748

Table C.3. Improvements in the joint and partial log-likelihood
functions, from modeling ut as an ARCH or GARCH process. The

improvement are measured relatively to the standard realized
EGARCH(1,1) model that models the variance of ut to be constant.

The results are for the full sample, January 1, 2002, to December 31,
2013, using the realized kernel as the realized measure

Gains in joint Gains in partial
log-likelihood log-likelihood

Stocks ARCH GARCH ARCH GARCH

AA 8.50 11.29 −1.15 −0.93
AIG 34.80 68.70 2.05 4.20
AXP 3.35 10.84 −0.23 −0.50
BA 0.23 9.87 −0.02 −0.22
BAC 20.16 31.39 −3.69 −2.52
C 3.83 47.90 0.60 6.08
CAT 6.08 14.09 −1.08 −1.81
CVX 10.35 25.74 0.66 0.28
DD 16.77 27.12 −1.61 −1.38
DIS 9.79 18.59 −0.16 −0.38
GE 19.06 29.08 −3.34 −2.02
HD 12.32 24.05 0.48 0.46
IBM 4.96 19.80 −0.30 −0.23
INTC 15.37 27.98 −0.29 −0.82
JNJ 11.20 23.12 −0.49 −1.05
JPM 1.05 6.43 0.26 0.52
KO 33.43 37.00 0.37 0.16
MCD 8.27 10.27 −0.08 −0.05
MMM 4.45 35.59 −0.34 0.27
MRK 6.91 27.56 0.30 0.36
MSFT 10.72 26.44 −1.06 −1.00
PG 30.07 45.98 0.56 −0.13
T 5.79 28.05 0.77 1.12
UTX 7.85 13.75 0.05 0.00
VZ 1.44 7.29 0.10 −0.29
WMT 6.56 16.02 −0.03 0.13
XOM 5.34 22.30 −0.39 −0.01
SPY 8.13 33.72 0.20 −0.22
Average 10.96 25.00 −0.28 0.00
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