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Abstract

We study parameter estimation from the sample X , when the objective is to maximize the

expected value of a criterion function, Q, for a distinct sample, Y. This is the situation that arises

when a model is estimated for the purpose of describing other data than those used for estimation,

such as in forecasting problems. A natural candidate for solving maxT∈σ(X ) EQ(Y, T ) is the innate

estimator, θ̂ = arg maxθ Q(X , θ). While the innate estimator has certain advantages, we show that

the asymptotically efficient estimator takes the form θ̃ = arg maxθ Q̃(X , θ), where Q̃ is defined from

a likelihood function in conjunction with Q. The likelihood-based estimator is, however, fragile,

as misspecification is harmful in two ways. First, the likelihood-based estimator may be inefficient

under misspecification. Second, and more importantly, the likelihood approach requires a parameter

transformation that depends on the true model, causing an improper mapping to be used under

misspecification.
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1 Introduction

Efficient parameter estimation is a well-explored topic. For instance, an estimator T (X ) is said to be

efficient for θ if it minimizes the expected loss, E[L(T (X ), θ)], where L is a loss function and X is the

random sample available for estimation.

In this paper, we consider parameter estimation with a different objective that pertains to many

empirical problems. This objective involves a second random sample, Y, that is distinct from the data

available for estimation, X . We ask: How should we estimate the model from X when our true objective

is to apply the estimated model to the sample Y? This is the structure that emerges in forecasting

problems where Y represents future data and X is the sample available for estimation. More generally,

the sample Y can represent a random draw from the general population for which an estimated model is

to be used. For instance, from a pilot study (based on X ), one may seek to optimize tuning parameters

in a policy program before the program is implemented more widely (to Y). We argue that this is the

motivation for much empirical research as well as popular information criteria for model selection, see

Akaike (1978).

To fix ideas: let the objective be maxT∈σ(X ) EQ(Y, T ), where Q is a criterion function and T ∈ σ(X )

refers to the requirement that T must be measurable with respect to the σ-field generated by X . A

natural candidate is the extremum estimator, θ̂ = arg maxθQ(X , θ), which we label the innate estimator

because it is deduced directly from Q. While the innate estimator seeks to maximize the objective, Q,

it need not be efficient and a better estimator may be available. To study this problem we consider a

class of extremum estimators that are characterized by θ̃ = arg maxθ Q̃(X , θ), where Q̃ is a different

criterion. Some might find it bizarre to estimate parameters using a criterion, Q̃, that differs from that

of the actual objective, Q, but this approach is quite common in practice. Sometimes this approach is

taken for the sake of convenience such as simplifying the estimation problem. More interestingly, the

most efficient estimator will often take this form. In fact, as we show in this paper, the asymptotically

efficient estimator is one deduced from a carefully crafted Q̃, which we refer to as the likelihood-based

estimator (LBE). However, the LBE also has drawbacks because the harmful effects of misspecification

can offset any advantage the LBE has under correct specification. We analyze this issue, and show that

the key problem with misspecification is not the lack of efficiency, but an inconsistency that arises from

evaluating expectations with a misspecified model.

These results have implications for model selection in econometrics. The advantages of the likelihood-

based estimation speak in favor of using a likelihood approach in the model construction. Meanwhile,

the pitfalls of LBE emphasize the importance of paying attention to model diagnostics, with the caveat
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that some forms of misspecification are relatively innocuous to the criterion, Q, while others can be

severe yet difficult to detect empirically.1

Some key results in this paper can be illustrated with the following simple example: Let X1, . . . , Xn,

Xn+1, . . . , Xn+m be iid random variables. Set X = (X1, . . . , Xn) and Y = (Xn+1, . . . , Xn+m), and

suppose that the criterion is given by Q(Y, T (X )) =
∑m

i=1 q(Yi − T (X )), where q(u) = u − exp(u).

The innate estimator solves maxθ
∑n

i=1 q(Xi − θ), and is given by θ̂ = log[ 1
n

∑n
i=1 exp(Xi)]. Under the

assumption that Xi ∼ N(µ, σ2), one can instead use the estimator, θ̃ = µ̃+ 1
2 σ̃

2, where µ̃ and σ̃2 are the

maximum likelihood estimates of µ and σ2, respectively, both estimated from the sample X .2 We will

show that θ̃ dominates θ̂ by a substantial amount, provided that the Gaussian assumption is true. The

flip-side is that the likelihood-based estimator can be vastly inferior to θ̂ under misspecification. But it

is important to emphasize that the fragility does not stem from (µ̃, σ̃2) having an asymptotic variance

that exceeds the lower bound. Rather it is a consequence of the mapping, θ̃ = µ̃ + 1
2 σ̃

2, being invalid

if the Gaussian assumption does not hold. For a broad class of criteria, we obtain similar results in an

asymptotic framework, as n,m→∞. In this simple problem, which is a special case of a LinEx example

used in Section 3, we can compare the relative merits of θ̂ and θ̃ without the need for n,m→∞.

We establish results in an asymptotic framework that is based on standard assumptions in the

context of M -estimation. While our framework and objective differ from the conventional approach

used to analyze efficient parameter estimation, the classical structure emerges after manipulating the

asymptotic expressions. This enables us to utilize the Cramer-Rao lower bound to establish a likelihood-

based estimator as the asymptotically efficient estimator, albeit new and important issues arise in the

case where the likelihood is misspecified. Under correct specification, the likelihood-based estimator

dominates the innate estimator, in some cases by a wide margin. When the likelihood is misspecified,

the asymptotic efficiency argument perishes but, more importantly, the likelihood approach requires a

mapping of likelihood parameters to criterion parameters that hinges on the likelihood being correctly

specified. Misspecification distorts this mapping, which causes θ̃ to be inconsistent for the value of

θ that maximizes the objective. So, our results cast light on the relative merits of likelihood-based

estimation versus innate estimation. An advantage of the likelihood approach is that a single estimated

model can, in principle, be customized to suit a broad range of objectives. In contrast, the innate

estimator is intrinsically tied to the objective. So if the objective changes then the innate estimator

must be redefined accordingly. Our limit results do not univocally point to one approach being preferred
1A likelihood approach to model selection with extensive use of model diagnostics is sometimes associated with the

London School of Economics approach to econometric modeling.
2In this example, Q̃(X , θ) is simply the Gaussian log-likelihood function, reparametrized by (µ, σ2) 7→ (θ, τ), with the

log-likelihood function concentrated to eliminate the nuisance parameter, τ , see Section 2.1.
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to the other. It ultimately rests on how confident one is about the specification. If the likelihood

is correctly specified, the limit theory clearly favors the likelihood-based estimator, while the innate

estimator is preferred asymptotically under a fixed degree of misspecification. At moderate levels of

misspecification, as defined in a framework with local-to-correct specifications, the choice is less obvious.

The misspecification threshold at which the innate estimator becomes superior to the likelihood-based

estimator is context-specific and depends on many factors including the nature of misspecification and

the criterion function, Q. Model diagnostics and misspecification tests can provide some assistance in

the choice of estimator, but should be tailored for the specific problem at hand.

In the context of forecasting, many have argued that the estimation criterion should coincide with

the actual objective, starting with Granger (1969), see also Weiss (1996). For empirical support of this

approach, see e.g. Weiss and Andersen (1984) and Christoffersen and Jacobs (2004). Changing the

forecasting horizon amounts to changing the objective even if the same loss function is applied to the

forecasting errors. For this reason, one might expect the optimal estimation method to vary with the

forecasting horizon. In the autoregressive setting with quadratic prediction loss Bhansali (1999) and Ing

(2003) have established that the relative merits of the two estimation methods depend on the degree of

misspecification. This led Schorfheide (2005) to propose a model selection criterion that accounts for

the bias-variance trade-off, while Hansen (2010a) developed a leave-h-out cross-validation criterion that

is well suited for the selection of h-step ahead forecasting models.

The existing literature has primarily focused on the case with a mean square error (MSE) loss

function and likelihood functions based on Gaussian specifications. In this paper, we establish results

for the case where both Q and Q̃ belong to a general class of criteria that are suitable forM -estimation,

see e.g. Huber (1981) and Amemiya (1985). In this general framework we establish analytical results

that are asymptotic in nature. Specifically, we will compare the relative merits of estimators in terms

of the limit distributions that arise in this context. The asymptotic results are complemented and

illustrated in an application with an asymmetric (LinEx) criterion. The innate estimator performs on

par with the likelihood-based estimator (LBE) when the loss is near-symmetric, whereas the LBE clearly

dominates the innate estimator under asymmetric loss. In contrast, when the likelihood is misspecified

the performance of the LBE deteriorates and does so increasingly as the degree of misspecification

increases.

We illustrate the relevance of the theoretical results in an empirical application to volatility forecast-

ing. The direct forecast (innate estimation) is found to dominate the iterated forecast (likelihood-based

estimation) when the underlying model is misspecified. Conversely, with a more flexible model speci-
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fication, the likelihood-approach dominates direct forecasting – in particular with an asymmetric loss

function where the inefficiency of the innate estimation is more pronounced.

The rest of the paper is structured as follows. Section 2 presents the theoretical framework and

the asymptotic results. We illustrate the results in Sections 3 with an application to asymmetric loss

function and comment on the relation to direct and iterated forecasts in Section 4 through an empirical

application on volatility prediction. Section 5 concludes and the three appendices contain proofs of

the theoretical results in Section 2, auxiliary results related to the application, and details about the

simulation studies, respectively.

2 Theoretical Framework

We will compare the merits of the innate estimator, θ̂, to a generic alternative estimator, θ̃. This

is done within the theoretical framework of M -estimators, see Huber (1981), Amemiya (1985), and

White (1994), and our notation will largely follow that in Hansen (2010b). We will first make the

simple observation that a discrepancy between Q and Q̃ can seriously degrade the performance of the

estimator, θ̃. Then, we show that the asymptotically optimal estimator is an estimator that is deduced

from the maximum likelihood estimator. This theoretical result is analogous to the Cramer-Rao bound.

We address the case where the likelihood function involves a parameter of higher dimension than θ, and

finally we derive results for the situation where the likelihood is misspecified. Although our results are

not specific to forecasting problems, we sometimes use standard forecasting terminology by referring to

X and Y as in-sample and out-of-sample, respectively.

The criterion functions take the form

Q(X , θ) =
n∑
t=1

q(xt, θ) and Q̃(X , θ) =

n∑
t=1

q̃(xt, θ),

with xt = (Xt, . . . , Xt−k) for some k. This framework includes criteria deduced from Markovian models.

For instance, least squares estimation of an AR(1) model, Xt = ϕXt−1 + εt, would translate into

xt = (Xt, Xt−1) and q̃(xt, θ) = −(Xt−ϕXt−1)2. Here we might have θ = ϕ, or some other transformation

that is better suited for maximizing the true objective, defined q(xt, θ). For instance, we could have

q(xt, θ) = −|Xt − θXt−1|. Additional examples will be given below.

Assumption 1. Suppose that {Xt} is stationary and ergodic.

The assumed stationarity carries over to q(xt, θ) and q̃(xt, θ), and their derivatives that we introduce
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below. Next, we make some regularity assumptions about the criteria functions.

Assumption 2. (i) The criteria functions q(xt; θ) and q̃(xt; θ) are continuous in θ for all xt and

measurable for all θ ∈ Θ, where Θ is compact. (ii) θ∗ and θ0 are the unique maximizers of E[q(xt, θ)]

and E[q̃(xt, θ)], respectively, where θ∗ and θ0 are interior to Θ; (iii) E[supθ∈Θ |q(xt, θ)|] < ∞ and

E[supθ∈Θ |q̃(xt, θ)|] <∞;

The assumed stationarity and Assumption 2 ensure that the θ that maximizes E[Q(X , θ)] is unique,

invariant to the sample size, and is given by θ∗ = arg maxθ E[q(xt, θ)]. Similarly for Q̃ and θ0.

The following consistency follows from the existing literature on M -estimators.

Lemma 1. Given Assumptions 1 and 2. The extremum estimators θ̂ = arg maxθ∈Θ
∑n

t=1 q(xt, θ) and

θ̃ = arg maxθ∈Θ
∑n

t=1 q̃(xt, θ) converge in probability to θ∗ and θ0, respectively, as n→∞.

Because the innate estimator (as its label suggests) is intrinsic to the criterion Q, it will be consistent

for θ∗ under standard regularity conditions in the sense that θ̂ p→ θ∗ as the sample size, n, increases.

This consistency need not hold for the alternative estimator, θ̃, unless θ∗ and θ0 coincide.

Next we assume the following regularity conditions that enable us to derive the limit results that

form the basis for our main results. These conditions are also standard in the literature onM -estimation.

Assumption 3. The criteria, q and q̃, are twice continuously differentiable in θ, where (i) the first

derivatives, s(xt, θ) and s̃(xt, θ), satisfy a central limit theorem, n−1/2
∑n

t=1 (s(xt, θ∗)
′, s̃(xt, θ0)′)′

d→

N(0,ΣS); (ii) the second derivatives, h(xt, θ) and h̃(xt, θ), are uniformly integrable in a neighborhood of

θ∗ and θ0, respectively, where the matrices A = −Eh(xt, θ∗) and Ã = −Eh̃(xt, θ0) are invertible.

Let B and B̃ denote the long-run variances of s(xt, θ∗) and s̃(xt, θ0), respectively. Then, ΣS will

have a block structure, with B and B̃ as diagonal blocks. There is no need to introduce a notation for

the off-diagonal blocks in ΣS , as they are immaterial to subsequent results.

The following result establishes an asymptotic independence between the in-sample scores and out-

of-sample scores, which is useful for the computation of conditional expectations in the limit distribution.

Lemma 2. Given Assumption 3. We have

(
n−1/2

n∑
t=1

s(xt, θ∗)
′, n−1/2

n∑
t=1

s̃(xt, θ0)′,m−1/2
n+m∑
t=n+1

s(xt, θ∗)
′

)′
d→ N(0,

 ΣS 0

0 B

).

In this literature it is often assumed that X and Y are independent, see e.g. Schorfheide (2005,

assumption 4), which implies independence of the score that relates to X and the score that relates to
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Y. Lemma 2 shows that the assumed independence between X and Y can be dispensed with, because

the asymptotic independence of the scores is a simple consequence of the central limit theorem being

applicable. No additional assumption is needed, and the asymptotic independence holds regardless of

the properties of the scores, which may be serially dependent, as long as the central limit theorem

applies.

Definition 1. Two criteria, Q and Q̃, are said to be coherent if θ∗ = θ0, otherwise the criteria are

said to be incoherent. Similarly, we refer to an estimator as being coherent for the criterion Q if its

probability limit is θ∗.

To simplify the exposition, we set m = n, which is without loss of generality. The situation m,n→

∞, possibly at different rates, is qualitatively identical but requires different normalizations for different

terms.3

Next, we state the fairly obvious result that an incoherent criterion will lead to inferior performance.

Lemma 3. Consider an alternative estimator, θ̃, deduced from an incoherent criterion, so that θ̃ p→

θ0 6= θ∗. Then

Q(Y, θ̂)−Q(Y, θ̃)→∞,

in probability. The divergence is at rate n.

The result shows that any incoherent estimator is asymptotically inferior to the innate estimator,

which serves as a reminder that mindless estimation without attention to the actual objective is unde-

sirable. Lemma 3 shows that consistency for θ∗ is a critical requirement, which limits the set of criteria,

Q̃, that are suitable for estimation. It is, however, possible to craft a coherent criterion, Q̃, from a

likelihood function, as we shall show below.

Theorem 1. If Assumptions 1-3 hold and Q̃ is a coherent criterion, then the limit distribution of

Q(Y, θ̃)−Q(Y, θ0), as n→∞ is given by

Z ′yB
1/2Ã−1B̃1/2Zx − 1

2Z
′
xB̃

1/2Ã−1AÃ−1B̃1/2Zx,

where Zx, Zy ∼ iidN(0, I), and its expected value is: −1
2tr{Ã−1AÃ−1B̃}.

Interestingly, for the case with the innate estimator, the expected value of the limit distribution,
3The setup with m = n is common in this literature, and it was used in the motivation of the Akaike information

criterion (AIC), see Akaike (1978).
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−1
2tr{A−1B}, can be related to a result by Takeuchi (1976), who generalized the AIC to the case with

misspecified models.

The expected value of the limit distribution motivates the following definition of criterion risk:

Definition 2. The asymptotic criterion risk, induced by the estimation error of θ̃, is defined by

R(θ̃) = 1
2tr{AÃ−1B̃Ã−1}.

The finite sample analog is defined by Rn(θ̃) = E[Q(Y, θ0)−Q(Y, θ̃)].

For the innate estimator we have R(θ̂) = 1
2tr{A−1B} and its magnitude relative to 1

2tr{AÃ−1B̃Ã−1}

defines which of the two estimators is most efficient. We formulate this by defining the relative criterion

efficiency

RQE(θ̂, θ̃) =
E[Q(Y, θ0)−Q(Y, θ̃(X ))]

E[Q(Y, θ0)−Q(Y, θ̂(X ))]
=
Rn(θ̃)

Rn(θ̂)
. (1)

Note that an RQE < 1 defines the case where θ̃ outperforms the innate estimator, θ̂. The asymptotic

expression for the RQE is
R(θ̃)

R(θ̂)
=

tr{AÃ−1B̃Ã−1}
tr{A−1B}

,

provided that θ̃ is a coherent estimator. For an incoherent estimator it follows by Lemma 3 that

RQE→∞, as n→∞. Coherency is therefore imperative to good asymptotic properties of an estimator.

2.1 Likelihood-Based Estimator

In this section we focus on estimators that are deduced from a likelihood criterion. In some cases, one

can obtain θ̃ directly as a maximum likelihood estimator, but a mapping of the vector of likelihood

parameters, ϑ say, to the vector of criterion parameters, θ, is typically needed. This is obviously the

case if the dimensions of θ and ϑ do not coincide.

Consider a statistical model, {Pϑ}ϑ∈Ξ, and suppose that Pϑ0 is the true probability measure, with

ϑ0 ∈ Ξ. The implication is that the expected value is defined by Eϑ0(·) =
∫

(·)dPϑ0 , and we therefore

have that

θ0 = arg max
θ

Eϑ0 [Q(Y, θ)],

which defines θ0 as a function of ϑ0. This mapping, θ0 = θ(ϑ0), is defined implicitly and requires no

estimation. Closed-form expressions for θ(ϑ0) are available in many cases, but the mapping can be
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difficult to determine in some problems, see (6) for an example.

For some analytical results, we need the mapping from ϑ to θ to satisfy the following regularity

conditions.

Assumption 4. There exists τ(ϑ) so that ϑ 7→ (θ, τ) is continuously differentiable with ∂
∂ϑ(θ(ϑ)′, τ(ϑ)′)′

having non-zero determinant at ϑ0.

The assumption ensures that the reparameterization that distills θ from ϑ is invertible in a manner

that does not degenerate in the limit distribution. The intuition is simply that this assumption ensures

that θ̃ = θ(ϑ̃) is the extremum estimator that maximizes the concentrated log-likelihood function

`c(θ) = `(θ, τ̃(θ)), where τ̃(θ) = arg maxτ `(θ, τ).

The assumption is relatively innocuous, but we do consider a case in Section 3 where it is violated.

This special case yields additional intuition about the structure of the problem.

Lemma 4. Given Assumption 1–4, let ϑ̃ be the MLE. Then θ̃ = θ(ϑ̃) is a coherent estimator.

When θ̃ is estimated from a correctly specified likelihood function, the information matrix iden-

tity, Ã = B̃, follows from standard regularity conditions. In terms of asymptotic criterion risk, the

innate estimator relative to the likelihood-based estimator, amounts to a comparison of the quantities
1
2tr{A−1B} and 1

2tr{AB̃−1}. The following Theorem shows that the latter is smaller.

Theorem 2 (Optimality of likelihood-based estimator). Suppose that Assumptions 1–4 hold, and let ϑ̃

be the maximum likelihood estimator so that θ̃ = θ(ϑ̃) is the likelihood-based estimator. If the likelihood

function is correctly specified, then, as n→∞

Q(Y, θ̂)−Q(Y, θ̃) d→ ξ,

where E[ξ] = R(θ̂)−R(θ̃) ≥ 0.

Theorem 2 shows that the likelihood-based approach is asymptotically superior to the criterion-based

approach and the following Corollary shows that the likelihood-based estimator is in fact superior to

any other M -estimator.

Corollary 1. Let θ̃ = θ(ϑ̃) be the likelihood-based estimator and let θ̌ be any other coherent estimator.

Suppose that Assumptions 1-4 hold with Assumptions 2 and 3 adapted to θ̌ in place of θ̂. Then

Q(Y, θ̌)−Q(Y, θ̃) d→ ξ,
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where E[ξ] = R(θ̌)−R(θ̃) ≥ 0.

An inspection of the proof of Corollary 1 reveals that the inequality is strict, unless the alternative

estimator, θ̌, is asymptotically equivalent to θ̃. So the likelihood-based estimator is (also) asymptot-

ically efficient in the present framework with an out-of-sample objective. The proof also reveals that

manipulation of the asymptotic expression simplifies the comparison to one that is well known from the

asymptotic analysis of estimation.

2.2 The Case with a Misspecified Likelihood

Misspecification is harmful to the likelihood-based estimator in two ways. First, the resulting estimator

is no longer efficient, which eliminates the argument in favor of adopting the likelihood-based estimator.

Second, and more importantly, the mapping from ϑ to θ depends on the true probability measure, so the

mapping from ϑ to θ will be improper if the likelihood is misspecified. The reason is that the mapping is

deducted from an expected value that is evaluated with the wrong distribution when the model is mis-

specified. The likelihood-based estimator θ̃ may therefore be inconsistent for θ∗ under misspecification,

so that the (misspecified) likelihood-based criterion is incoherent in the sense of Definition 1.

A fixed degree of misspecification is likely to result in an inconsistent estimator and Lemma 3 dictates

that the LBE is asymptotically inferior to the innate estimator as n→∞. However, this does not imply

that slight misspecification renders the LBE inferior. In finite samples, one would expect a small degree

of misspecification to have a modest impact on the LBE. We therefore seek an asymptotic design that

can accommodate the situation with “mild” misspecification. This is achieved with an asymptotic design

with local-to-correct specifications that induce a discrepancy between θ0 and θ∗ that is of order n−1/2.

This asymptotic design is analogous to designs with local-to-unit roots and weak instrumental variables.

2.2.1 Local-to-Correct Specification

We consider situations where the true probability measure does not coincide with Pϑ0 . To make matter

interesting, we consider a case with a locally misspecified model where the degree of misspecification is

balanced with the sample size. Let the true probability measure be Pn. Within the statistical model,

{Pϑ}ϑ∈Ξ, that defines the log-likelihood function, we let the best approximating likelihood parameter be

denoted by ϑ(n)
0 , and the corresponding criterion parameter is denoted θ(n)

0 = θ(ϑ
(n)
0 ). As n increases,

Pn approaches Pϑ0 for some ϑ0 ∈ Ξ, and this occurs at a rate so that θ(n)
0 −θ∗ = n−1/2b for some b ∈ Rk.

So, the vector b defines the degree of local misspecification, where correct specification corresponds to
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the case: b = 0. Under the local-to-correct specification the limit distribution of Q(Y, θ∗) −Q(Y, θ̃) is

as follows:

Theorem 3. Suppose that Pn → Pϑ0 as n→∞, so that θ(ϑ(n)
0 )− θ(ϑ0) = n−1/2b, then

R(θ̃) = 1
2tr{A(B̃−1 + bb′)},

where B̃ = E[−h̃(xi, θ∗)].

Interestingly, the likelihood-based estimator retains its efficiency in terms of asymptotic variance

under local misspecification but is negatively affected by the asymptotic bias. Thus, under local mis-

specification the relative criterion efficiency is tug-of-war between the magnitude of the bias, bb′, and

A−1BA−1 − B̃−1. The former is the asymptotic penalty caused by local misspecification, whereas the

latter is the advantage that the likelihood-based estimator has over the innate estimator in terms of

asymptotic variance.

One can measure the degree of local misspecification by a measure of non-centrality. In the univariate

case (θ ∈ R) this can be expressed in units of standard deviations, d = b
√
B̃, which can be interpreted

as the expected value of the t-statistic, (θ̃ − θ∗)/
√

avar(θ̃). In the multivariate case the non-centrality

may be measured as d =
√
b′B̃b. The degree of non-centrality is a measure of the (average) statistical

evidence of misspecification. When k = 1 the non-centrality parameter, d, translates into criterion risk

trough the term b2 = d2/B̃. In higher dimensions (k ≥ 2) different types of misspecification will amount

to the same non-centrality, d =
√
b′B̃b, but will different impact on criterion risk, tr{Abb′} = b′Ab, unless

B̃ ∝ A. The following Theorem states upper and lower bounds on the criterion risk that can result from

a given level of misspecification.

Theorem 4. Let the local misspecification, b, be such that d =
√
b′B̃b. Then the asymptotic criterion

risk resulting from this misspecification, b′Ab, is bounded by λmind
2 ≤ b′Ab ≤ λmaxd

2 where λmin and

λmax are the smallest and largest solutions (eigenvalues) to |A− λB̃| = 0.

The degree of misspecification could be measured in other ways than by the non-centrality parameter

d, for instance, in terms of Kullback-Leibler divergence. In one of our simulation designs below, where

the likelihood-based estimator is deduced from a Gaussian likelihood, we translate the value of d into

the expected value of the Jarque-Bera test statistic.

In the next section we consider an application with correct and local-to-correct specifications. The

illustration is based on the asymmetric LinEx loss function, that facilitates closed-form expressions for
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key asymptotic quantities. The application also enables us to consider a special case where Assumption

4 is violated.

3 The Case with Asymmetric Loss and a Gaussian Likelihood

In this section we apply the theoretical results to the case where the criterion function is given by

the LinEx loss function. In forecasting problems there are many applications where asymmetric loss is

appropriate, see e.g. Granger and Newbold (1977), Christoffersen and Diebold (1997), and Hwang et al.

(2001). The LinEx loss function is a tractable asymmetric loss function that was introduced by Varian

(1974), and it has found many applications in economics, see e.g. Weiss and Andersen (1984), Zellner

(1986), Diebold and Mariano (1995), and Christoffersen and Diebold (1997).

Here we shall adopt the following parameterization of the LinEx loss function

Lc(x) =


c−2[exp(cx)− cx− 1] for c ∈ R\{0},

1
2x

2 for c = 0

(2)

which has a unique minimum at x = 0. The absolute value of the parameter c determines the degree of

asymmetry and its sign defines whether the asymmetry is left-skewed or right-skewed, see Figure 1. The

quadratic loss arises as the limited case, limc→0 Lc(x) = 1
2x

2, which motivates the definition of L0(x).

We adopt the LinEx loss function because it produces simple estimators in closed-form and analytical

expressions of criterion risk that ease the computational burden.

The objective in this application is to estimate θ for the purpose of minimizing the expected loss,

ELc(Yi − θ). This problem maps into our theoretical framework by defining the criterion function with

q(Xi, θ) = −Lc(Xi − θ), and it is easy to show that θ∗ = arg minELc(Xi − θ) = c−1 log[E exp(cXi)],

provided that E exp(cXi) <∞. Similarly, it can be shown that the innate estimator, which is given as

the solution to min
θ

∑n
i=1 Lc(Xi − θ), can be written in closed-form as

θ̂ =
1

c
log[

1

n

n∑
i=1

exp(cXi)], (3)

and by the ergodicity of Xi, which carries over to any function of Xi, including exp(cXi), it follows

that θ̂ as→ θ∗. Next, we introduce a likelihood-based estimator that is deduced from the assumption that
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Figure 1: The LinEx loss function for three values of c.

Xi ∼ iidN(µ0, σ
2
0), for which it can be shown that

θ0 = µ0 +
cσ2

0

2
, (4)

see Christoffersen and Diebold (1997). The likelihood-based estimator is therefore given by

θ̃ = µ̃+
cσ̃2

2
, (5)

where µ̃ = n−1
∑n

t=1Xi and σ̃2 = n−1
∑n

t=1(Xi− µ̃)2 are the maximum likelihood estimators of µ0 and

σ2
0, respectively.

Equation (4) illustrates the need to map the likelihood parameter vector, ϑ = (µ, σ2)′, into criterion

parameter, θ. The likelihood-based estimator will be consistent for θ0, which coincides with θ∗ if the

Gaussian assumption is correct. Under misspecification the two need not coincide.

We shall compare the two estimators in terms of the LinEx criterion

Q(Y; θ) = −
n∑
i=1

c−2[exp{c(Yi − θ)} − c(Yi − θ)− 1],

13



where Yi are iid and independent of (X1, . . . , Xn). First we consider the case with correct specification,

i.e. the case where (X1, . . . , Xn, Y1, . . . , Yn) are iid with marginal distribution N(µ0, σ
2
0). Subsequently

we turn to the case where the marginal distribution is a normal inverse Gaussian (NIG) distribution,

which causes the Gaussian likelihood to be misspecified.

3.1 Results for the Case with Correct Specification

With qi(Xi, θ) = −Lc(Yi−θ) we have si(Xi, θ) = c−1[exp{c(Yi−θ)}−1] and hi(Xi, θ) = − exp{c(Xi−θ)}.

With Xi ∼ iidN(µ, σ2) it can be shown that

A = E[−hi(Xi, θ0)] = 1,

B = var[si(Xi, θ0)] =
exp(c2σ2)− 1

c2
, (= σ2 if c = 0),

Ã = B̃ = 1/avar(θ̃) = 1/(σ2 + c2σ4/2),

see Appendix B.1. Consequently, in this application we have

RQE =
tr{AB̃−1}
tr{A−1B}

=
1

BB̃
=

(cσ)2 + (cσ)4/2

exp(cσ)2 − 1
, for cσ 6= 0,

which is (unsurprisingly) less than one, and RQE = 1 arises only in the limit as cσ → 0, where the two

estimators coincide.

The relative efficiency of θ̂ and θ̃ is compared in Table 1 for the case with a correctly specified likeli-

hood function. Panel A of Table 1 displays the asymptotic results based on our analytical expressions,

whereas Panels B and C present finite sample results based on simulations with n = 1, 000 and n = 100,

respectively. 500,000 replications were used to compute all statistics.4 The simulation design is detailed

in Appendix C.1. The asymmetry parameter is given in the first column followed by the population

value of θ∗, the RQE and the criterion losses resulting from estimation error.

Table 1 shows that the likelihood-based estimator dominates the innate estimator and does so

increasingly as c increases in absolute value. The exception is the case c = 0, where the two estimators

coincide. Our analytical results imply the superiority of the LBE in the asymptotic design of Panel

A; however the LBE also dominates the innate estimator in finite samples, albeit to a less extent.

The innate estimator appears to be somewhat less inferior in finite samples because its criterion loss

tends to be relatively smaller in finite samples. However, this does not imply that the innate estimator

performs better with a smaller sample size. To the contrary, the per observation criterion loss, Rn(θ̂)/n,
4The standard deviations of all simulated quantities are smaller than 10−5.
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Table 1: Relative Efficiency under LinEx Loss

Panel A: Asymptotic Results

c θ∗ RQE R(θ̂) R(θ̃) bias(θ̂) bias(θ̃)

0 0 1 0.5 0.5 0.000 0.000
0.25 0.125 0.999 0.516 0.516 0.000 0.000
0.5 0.250 0.990 0.568 0.563 0.000 0.000
1 0.500 0.873 0.859 0.750 0.000 0.000
1.5 0.750 0.563 1.886 1.063 0.000 0.000
2 1.000 0.224 6.700 1.500 0.000 0.000
2.5 1.250 0.050 41.36 2.063 0.000 0.000

Panel B: Finite Sample Results: n = 1, 000

c θ∗ RQE Rn(θ̂) Rn(θ̃) bias(θ̂) bias(θ̃)

0 0 1 0.499 0.499 0.000 0.000
0.25 0.125 0.999 0.518 0.518 0.000 0.000
0.5 0.250 0.991 0.569 0.563 0.000 0.000
1 0.500 0.880 0.853 0.748 -0.001 0.000
1.5 0.750 0.600 1.777 1.068 -0.003 -0.001
2 1.000 0.350 4.341 1.513 -0.010 -0.001
2.5 1.250 0.217 9.670 2.100 -0.030 -0.001

Panel C: Finite Sample Results: n = 100

c θ∗ RQE Rn(θ̂) Rn(θ̃) bias(θ̂) bias(θ̃)

0 0 1 0.498 0.498 0.000 0.000
0.25 0.125 0.999 0.515 0.514 -0.001 -0.001
0.5 0.250 0.991 0.567 0.562 -0.003 -0.003
1 0.500 0.900 0.839 0.753 -0.009 -0.005
1.5 0.750 0.720 1.493 1.075 -0.023 -0.008
2 1.000 0.560 2.745 1.526 -0.058 -0.010
2.5 1.250 0.418 5.273 2.203 -0.122 -0.012

The likelihood-based estimator θ̃ is compared to the innate estimator, θ̂, in terms of the relative criterion efficiency in the
case with LinEx loss and iid Gaussian observations with zero mean and unit variance. The former dominates the innate
estimator and does so increasingly as the asymmetry increases. The upper panel is intended to match the asymptotic
results, whereas the next two panels present the corresponding results in finite samples, n = 100 and n = 1, 000. The
results are based on 500,000 simulations.
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is decreasing in n. Moreover, the innate estimator has a larger finite sample bias relative to that of the

likelihood-based estimator in this application.

3.1.1 Likelihoods with One-Dimensional Parameter

With a likelihood deduced from Xt ∼ N(µ, σ2) we have in some sense stacked the results against the

likelihood-based estimators. The likelihood approach involves a two-dimensional estimator, (µ̃, σ̃2),

whereas the innate estimator only estimates the one-dimensional θ. This could be favorable to the

innate estimator in finite samples, but the dimension of ϑ is actually immaterial to the asymptotic

comparison. This follows from the fact that the asymptotic RQE for the likelihood-based estimator is

always bounded by one regardless of the dimension of ϑ. However, the asymptotic variance of θ̃ could

be influenced by the complexity of the underlying likelihood function, so that a simpler likelihood (one

with fewer degrees of freedom) may be even better in terms of RQE. To illustrate this point, we consider

two nested models that both have a one-dimensional ϑ. The first nested model has σ2
0 to be known, so

that only µ is to be estimated, and the second nested model has µ0 to be known so that ϑ = σ2. The

latter design is of separate interest because it constitutes a case where Assumption 4 is violated. The

asymptotic variance of θ̃ that arises in the various models is the following:

avar(θ̃) =


σ2

0 + c2

2 σ
4
0

σ2
0 if σ2

0 is known,

c2

2 σ
4
0 if µ0 is known.

When σ2
0 is known, the asymptotic variance of θ̃ is smaller than when σ2

0 is estimated, which gives θ̃

an even greater advantage over the innate estimator, θ̂. In this design, the “stakes are raised” for the

likelihood-based estimator, because misspecification can also result from an incorrect assumed value

for σ2
0 (in addition to the other forms of misspecification). An interesting situation arises when µ0 is

known. In this case the mapping from ϑ to θ is simply θ = θ(σ2) = µ0 + cσ
2

2 , which does not depend

on σ2 when c = 0. This is the case where Assumption 4 is violated because ∂θ(σ2)/∂σ2 = 0 if c = 0.

Consequently, the asymptotic results need not apply in this case. It turns out that this particular

violation of Assumption 4 is advantageous to the likelihood-based estimator because with µ0 known

and c = 0 the optimal estimator is known without any need for estimation. If c is small, then the LBE

benefits from having a small asymptotic variance, because it is proportional to c2.

Asymptotic criterion risks and their corresponding RQEs in the situation where either µ0 or σ2
0
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Table 2: Relative Criterion Efficiency: 1-dimensional likelihood parameter

Panel A: σ2
0 known Panel B: µ0 known

θ̃ = µ̃+ cσ2
0/2 θ̃ = µ0 + cσ̃2/2

c θ∗ RQE R(θ̂) R(θ̃) RQE R(θ̂) R(θ̃)

0 0 1 0.5 0.5 0 0.5 0
0.25 0.125 0.969 0.516 0.5 0.030 0.516 0.016
0.5 0.25 0.880 0.568 0.5 0.110 0.568 0.063
1.0 0.50 0.582 0.859 0.5 0.291 0.859 0.250
1.5 0.75 0.265 1.886 0.5 0.298 1.886 0.563
2.0 1.00 0.075 6.700 0.5 0.149 6.700 1.000
2.5 1.25 0.012 41.36 0.5 0.038 41.36 1.563

The likelihood-based estimator θ̃ is compared to the innate estimator, θ̂, in terms of the relative criterion efficiency in the
case with LinEx loss and iid Gaussian observations with zero mean and unit variance. The former dominates the innate
estimator and the performance gap increases with the degree of asymmetry. Panel A corresponds to the case where the
variance σ2

0 is known, whereas panel B presents the case where the mean µ0 is known. The results are based on 500,000
simulations.

is known are reported in Table 2. As expected, the likelihood-based estimator performs even better

when the dimension of ϑ is smaller. Panel A has the case ϑ = µ (and σ2
0 is known) and Panel B

has the case where ϑ = σ2 (and µ0 is known). In Panel A the asymptotic criterion risk, R(θ̃), for

the likelihood estimator does not depend on c, while the corresponding criterion loss for the innate

estimator is increasing in c. In Panel B, R(θ̃) is increasing in c starting from zero at c = 0. The

theoretical explanation for this follows from the underlying information matrices. Because the innate

estimator is unaffected by the choice of specification for the likelihood, we continue to have A = 1

and B = [exp(c2σ2) − 1]/c2 in both cases. Consequently, we have the same expression for R(θ̂) =

1
2tr{A−1B} = 1

2 [exp(c2)−1]/c2, whereas the expressions are different for the likelihood-based estimators.

For the specification in Panel A we have B̃ = 1/σ2
0 = 1, so that 1

2tr{AB̃−1} = 1
2 . Similarly, for the

specification in Panel B we have B̃−1 = c2/2, so that 1
2tr{AB̃−1} = c2/4.

3.2 Local Misspecification

As previously discussed, misspecification distorts the likelihood-based estimator through two channels.

First, it erodes the efficiency argument that favors the likelihood-based estimator and second, the

transformation of the likelihood parameter into the criterion parameter is distorted and will be improper

for most types of misspecification. To study the impact of misspecification we now consider the case

where the truth is defined by a normal inverse Gaussian (NIG) distribution, that was introduced by

Barndorff-Nielsen (1977, 1978).
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Figure 2: The density of a standardized NIG distribution (mean zero and unit variance) with ξ = 0.5
and χ = 0.25 and the standard Gaussian density.

A NIG distribution is characterized by four parameters, λ, δ, α, and β, that represent the location,

scale, tail heaviness, and asymmetry, respectively. The density of a NIG distribution is presented in

Figure 2. The NIG-distribution is flexible and well suited for the present problem, because the Gaussian

distribution, N(µ, σ2), can be obtained as the limited case where λ = µ, δ = σ2α, β = 0, and α → ∞,

and because the distribution yields tractable analytical expressions for the quantities that are relevant

for our analysis of the LinEx loss function.

The mean and variance of NIG(λ, δ, α, β) are given by µ = λ+ δβ
γ and σ2 = δα

2

γ3
, respectively, where

γ =
√
α2 − β2. So it follows that the likelihood-based estimator (based on the Gaussian likelihood)

converges in probability to

θ0 = (λ+ δβ
γ ) + c

2δ
α2

γ3
.

The ideal value for θ is, however, equal to

θ∗ =


λ+ δ

c

[√
α2 − β2 −

√
α2 − (β + c)2

]
if c 6= 0,

λ+ δβ
γ if c = 0,

(6)

see Lemma B.1 in the Appendix. So θ0 and θ∗ generally do not coincide and the (misspecified) likelihood-

based estimator is therefore incoherent, with the exception of the following two special cases. The
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estimators are identical under symmetric loss, c = 0, and in the limited case: δ = σ2α, α → ∞, and

β = O(α1−a) with a ∈ (1
2 , 1], see Theorem B.1, because this causes the NIG to converge to the Gaussian

distribution.

To make our misspecified design comparable to our previous design (where Xi ∼ iidN(0, 1)) we

consider the standard NIG distribution with mean zero and unit variance. The zero mean and unit

variance are achieved by setting λ = − δβ
γ and δα

2

γ3
= 1. This family of standardized NIG distributions

can, conveniently, be characterized by the two parameters

ξ =
1√

1 + δγ
and χ = ξ

β

α
,

that will be such that 0 ≤ |χ| < ξ < 1, see Barndorff-Nielsen et al. (1985). Figure 2 displays the

density for the case with ξ = 0.5 and χ = 0.25. The original parameter values can be obtained using

the expressions

α = ξ

√
1− ξ2

ξ2 − χ2
and β = χ

√
1− ξ2

ξ2 − χ2
, (7)

that imply γ =
√

1−ξ2
ξ2−χ2 . The limited case where ξ = 0 (and hence χ = 0) corresponds to the standard

Gaussian distribution.

We now construct a local-to-correct specification by letting (θ0−θ∗) = b/
√
n in an asymmetric design

where χ = −ξ3/2 → 0. To ease the interpretation of the simulation results, we use that ξ ∝ n−1/3 to set

ξ to d×n−1/3 with d the degree of local misspecification. The parameters for the NIG are deduced from

ξ and the optimal predictor is computed using (6). In particular, with ξ ∝ n−1/3 so that χ ∝ −n−1/2,

it can be shown that α ∝ n1/3 and β ∝ −n1/6, see Appendix C.2 where the simulation design is fully

detailed. Besides, the results can be easily mapped in terms of the asymptotic bias b.

To assess the extent to which the misspecification is statistically detectable, we have computed

the expected value of the Jarque-Bera test statistic and the power of the Jarque-Bera test for various

values of d and three sample sizes. These numbers are reported in Table 3. The large sample size,

n = 106, is intended to emulate the asymptotic results, while the sample sizes n = 1000 and n = 200

provide a finite-sample analogy. The second column of the table reports the mapping of the level of

misspecification to the asymptotic bias in the case c = 1. The Table shows that the statistical evidence

for misspecification is strong once d ≥ 2 .

Table 4 displays the performance of the two estimators under local misspecification, as defined by

d, for different levels of asymmetry, c. The table also reports the optimal predictor, RQE, the criterion

risk induced by estimation, the bias of the likelihood-based predictor and the asymptotic criterion risk
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Table 3: Local Misspecification

“Asymptotic” n = 1, 000 n = 200

d b Jarque-Bera Power Jarque-Bera Power Jarque-Bera Power
0 0.00 2.000 5.00% 1.985 4.89% 1.912 4.51%
0.1 0.02 2.001 5.13% 1.981 4.89% 1.910 4.52%
0.2 0.04 2.012 5.14% 2.000 5.00% 1.941 4.70%
0.3 0.08 2.042 5.32% 2.030 5.25% 1.985 5.02%
0.5 0.17 2.184 6.43% 2.212 6.63% 2.216 6.49%
0.6 0.23 2.325 7.50% 2.373 7.83% 2.417 7.74%
0.8 0.35 3.098 11.3% 3.276 12.0% 3.624 12.0%
1 0.49 3.609 19.0% 3.765 19.0% 4.276 18.7%
1.5 0.89 7.184 52.1% 8.211 51.6% 10.91 48.0%
2 1.36 14.17 88.7% 17.90 86.8% 28.29 81.1%
2.5 1.89 25.61 99.5% 36.33 98.9% 70.14 97.0%
3 2.47 42.95 100% 69.52 100% 169.2 99.8%

The misspecification level, d, is measured in terms of the non-centrality level in the Jarque-Bera test. The “asymptotic”
results are based on 100, 000 replications with n = 106, and the finite-sample ones rely on 500, 000 simulations for n = 200
and n = 1000, respectively. The normality is rejected at the 5% level when the Jarque-Bera statistic is larger than the
χ2(2), i.e. 5.99. The misspecification level d is also mapped into the asymptotic bias b for the case where c = 1.

induced by the misspecification.

The first panel, where c = 0, corresponds to the case of the MSE loss function. Here, the likelihood-

based and innate estimators coincide, as they are both equal to the sample average. The LBE is therefore

not affected by misspecification if c = 0. The subsequent panels display the results with increasing levels

of asymmetry, c. The RQE in the last column of Table 4 shows how the performance of the (quasi)

likelihood-based estimator is affected by misspecification for different levels of asymmetry. For low levels

of misspecification, the LBE dominates the innate estimator and its performance improves as c increases.

In contrast, with larger deviations from normality its performance worsens and it becomes increasingly

inferior to the innate estimator. This is explained by the fact that the mapping from ϑ 7→ θ is distorted

under misspecification, and the distortion increases as the degree of misspecification increases. The

likelihood-based estimator still outperforms the innate estimator in terms of variance. This is evident

from the LBE’s variance component in column 5, which can be compared to column 3 (because the bias

is asymptotically negligible for the innate estimator). But the improper mapping of the LBE estimator

induces a bias-related risk component, which is exponentially increasing in d (see column 6), and this

bias is responsible for the degradation of the LBE’s performance.

To complement the asymptotic results in Table 4, we present results based on a sample size with

n = 200 in Table 5. The results are similar, although for large values of c we observe that the innate
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Table 4: Local Misspecification

Innate Likelihood-Based

d θ∗ R(θ̂) R(θ̃) Rvar(θ̃) Rbias(θ̃) RQE

c
=

0.
0

0 0.000 0.493 0.493 0.493 0.000 1.000
0.5 0.000 0.502 0.502 0.502 0.000 1.000
1 0.000 0.493 0.493 0.493 0.000 1.000
1.5 0.000 0.501 0.501 0.501 0.000 1.000
2 0.000 0.498 0.498 0.498 0.000 1.000
2.5 0.000 0.500 0.500 0.500 0.000 1.000
3 0.000 0.494 0.494 0.494 0.000 1.000

d θ∗ R(θ̂) R(θ̃) Rvar(θ̃) Rbias(θ̃) RQE

c
=

0.
2
5

0 0.125 0.514 0.514 0.514 0.000 1.000
0.5 0.125 0.507 0.507 0.507 0.000 1.000
1 0.125 0.522 0.522 0.521 0.001 1.000
1.5 0.125 0.516 0.517 0.515 0.002 1.003
2 0.125 0.507 0.511 0.507 0.004 1.008
2.5 0.125 0.520 0.528 0.520 0.008 1.014
3 0.125 0.513 0.526 0.514 0.012 1.025

d θ∗ R(θ̂) R(θ̃) Rvar(θ̃) Rbias(θ̃) RQE

c
=

0.
5

0 0.250 0.566 0.561 0.561 0.000 0.991
0.5 0.250 0.560 0.557 0.555 0.001 0.994
1 0.250 0.576 0.579 0.571 0.008 1.004
1.5 0.250 0.567 0.588 0.562 0.026 1.036
2 0.250 0.559 0.615 0.554 0.061 1.101
2.5 0.250 0.573 0.686 0.569 0.118 1.197
3 0.249 0.564 0.761 0.563 0.198 1.350

d θ∗ R(θ̂) R(θ̃) Rvar(θ̃) Rbias(θ̃) RQE

c
=

1

0 0.500 0.857 0.750 0.750 0.000 0.876
0.5 0.500 0.852 0.762 0.746 0.015 0.895
1 0.500 0.873 0.885 0.767 0.119 1.015
1.5 0.499 0.855 1.145 0.750 0.395 1.340
2 0.499 0.844 1.670 0.741 0.929 1.978
2.5 0.498 0.862 2.552 0.763 1.789 2.961
3 0.498 0.843 3.806 0.759 3.047 4.516

d θ∗ R(θ̂) R(θ̃) Rvar(θ̃) Rbias(θ̃) RQE

c
=

2

0 1.000 6.723 1.535 1.535 0.000 0.228
0.5 0.999 6.678 1.736 1.500 0.236 0.260
1 0.998 6.560 3.355 1.562 1.793 0.511
1.5 0.997 6.440 7.382 1.509 5.873 1.146
2 0.995 6.370 15.15 1.476 13.67 2.378
2.5 0.993 6.210 27.58 1.548 26.04 4.442
3 0.991 6.067 45.42 1.521 43.90 7.486

The likelihood-based estimator, θ̃, is compared with the innate estimator, θ̂, under local misspecification. The data
generating process is a NIG distribution whose discrepancy from the Gaussian specification is characterized by d. Rbias(θ̃)
measures the bias component of the risk, b′Ab/2. The simulation results are based on 100,000 replications with n = 106.
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Table 5: Local Misspecification (finite samples n = 200)

Innate Likelihood-Based

d θ∗ bias(θ̂) bias(θ̃) Rn(θ̂) Rvar
n (θ̂) Rbias

n (θ̂) Rn(θ̃) Rvar
n (θ̃) Rbias

n (θ̃) RQE

c
=

0.
0

0 0.000 0.000 0.000 0.500 0.500 0.000 0.500 0.500 0.000 1.000
0.5 0.000 0.000 0.000 0.503 0.503 0.000 0.503 0.503 0.000 1.000
1 0.000 0.000 0.000 0.501 0.501 0.000 0.501 0.501 0.000 1.000
1.5 0.000 0.000 0.000 0.499 0.499 0.000 0.499 0.499 0.000 1.000
2 0.000 0.000 0.000 0.498 0.498 0.000 0.498 0.498 0.000 1.000
2.5 0.000 0.000 0.000 0.499 0.499 0.000 0.499 0.499 0.000 1.000
3 0.000 0.000 0.000 0.500 0.500 0.000 0.500 0.500 0.000 1.000

d θ∗ bias(θ̂) bias(θ̃) Rn(θ̂) Rvar
n (θ̂) Rbias

n (θ̂) Rn(θ̃) Rvar
n (θ̃) Rbias

n (θ̃) RQE

c
=

0.
2
5

0 0.125 0.001 0.001 0.516 0.516 0.000 0.516 0.516 0.000 0.999
0.5 0.124 0.001 0.000 0.507 0.507 0.000 0.507 0.507 0.000 1.000
1 0.122 0.001 0.002 0.487 0.487 0.000 0.487 0.487 0.000 1.000
1.5 0.118 0.001 0.003 0.470 0.470 0.000 0.470 0.469 0.001 0.999
2 0.113 0.001 0.005 0.446 0.446 0.000 0.446 0.443 0.003 0.998
2.5 0.107 0.000 0.008 0.424 0.424 0.000 0.423 0.416 0.006 0.997
3 0.100 0.001 0.011 0.395 0.395 0.000 0.395 0.382 0.012 0.999

d θ∗ bias(θ̂) bias(θ̃) Rn(θ̂) Rvar
n (θ̂) Rbias

n (θ̂) Rn(θ̃) Rvar
n (θ̃) Rbias

n (θ̃) RQE

c
=

0.
5

0 0.250 0.001 0.001 0.568 0.565 0.000 0.563 0.560 0.000 0.991
0.5 0.247 0.001 0.002 0.548 0.548 0.000 0.545 0.545 0.000 0.995
1 0.242 0.001 0.007 0.509 0.509 0.000 0.513 0.509 0.005 1.009
1.5 0.235 0.001 0.014 0.473 0.473 0.000 0.491 0.473 0.018 1.038
2 0.228 0.001 0.021 0.430 0.430 0.000 0.473 0.428 0.045 1.101
2.5 0.219 0.001 0.030 0.389 0.389 0.000 0.473 0.384 0.089 1.215
3 0.209 0.001 0.040 0.345 0.345 0.000 0.496 0.339 0.157 1.438

d θ∗ bias(θ̂) bias(θ̃) Rn(θ̂) Rvar
n (θ̂) Rbias

n (θ̂) Rn(θ̃) Rvar
n (θ̃) Rbias

n (θ̃) RQE

c
=

1

0 0.500 0.004 0.003 0.847 0.828 0.002 0.752 0.741 0.000 0.887
0.5 0.489 0.004 0.009 0.775 0.774 0.001 0.719 0.710 0.008 0.927
1 0.470 0.003 0.028 0.664 0.663 0.001 0.716 0.639 0.077 1.078
1.5 0.447 0.003 0.051 0.568 0.568 0.001 0.825 0.574 0.251 1.451
2 0.422 0.002 0.076 0.472 0.472 0.001 1.066 0.508 0.558 2.258
2.5 0.395 0.002 0.102 0.391 0.390 0.000 1.472 0.462 1.009 3.766
3 0.367 0.002 0.130 0.317 0.317 0.000 2.085 0.450 1.635 6.579

d θ∗ bias(θ̂) bias(θ̃) Rn(θ̂) Rvar
n (θ̂) Rbias

n (θ̂) Rn(θ̃) Rvar
n (θ̃) Rbias

n (θ̃) RQE

c
=

2

0 1.000 0.035 0.005 3.139 2.869 0.119 1.523 1.470 0.003 0.485
0.5 0.959 0.028 0.036 2.580 2.503 0.077 1.475 1.342 0.133 0.572
1 0.896 0.021 0.099 1.903 1.861 0.042 2.038 1.110 0.928 1.071
1.5 0.826 0.014 0.169 1.377 1.355 0.021 3.499 0.939 2.560 2.542
2 0.754 0.010 0.241 0.961 0.951 0.010 5.792 0.817 4.975 6.030
2.5 0.682 0.007 0.313 0.658 0.653 0.005 8.794 0.773 8.021 13.38
3 0.610 0.005 0.385 0.443 0.442 0.002 12.45 0.819 11.63 28.08

The likelihood-based estimator θ̃ is compared with the innate estimator, θ̂, in the case where the Gaussian likelihood is
(locally) misspecified for different levels of asymmetry. The data generating process is a standard NIG distribution where
the degree of local misspecification is determined by d. The finite-sample results are based on 500,000 replications with
n = 200.

22



0 0.5 1 1.5 2
0.5

1

1.5

2

Local Misspecification (  )

R
e
la

ti
v
e
 C

ri
te

ri
o
n
 E

ff
ic

ie
n
c
y

 

 

c=1

c=0.5

c=0.1

d

Figure 3: RQE: Local Misspecification.

estimator begins to dominate the LBE once the misspecification parameter reaches d = 1. By comparing

the values of d for which the LBE dominates the innate estimator with the power reported in Table 3,

it is obvious that diagnostic tests can be beneficial in the selection of an estimator. However, diagnostic

tests are unlikely to provide perfect guidance in this respect for a number of reasons. One reason is

that there are going to be levels of misspecification that are difficult to detect, yet detrimental to the

likelihood-based estimator. This is illustrated in this application for medium levels of misspecification,

d ∈ [1, 2] and c ≥ 1. In this design one would prefer to use the innate estimator over the LBE. However,

for this level of misspecification one cannot rely on the JB test for the selection of the estimator, because

it only has moderate power in this range for d. If more powerful tests were adopted, we would face the

opposite problem of having higher rejection rates for d < 1 where the LBE still dominates the innate

estimator.

Figure 3 illustrates the impact of local misspecification on the RQE under LinEx loss.5 It shows that

the LBE dominates the innate estimator when the misspecification is small (d ≤ 1). At some point (at

about d ' 1) the local misspecification more than offsets the advantages that the likelihood approach

offers in terms of a reduced asymptotic variance. The larger is c the more advantageous it is to use

the LBE over the innate estimator for low levels misspecification. The ranking is reversed under severe

misspecification, where a high degree of asymmetry magnifies the distortions caused by misspecification.
5These results are based on n = 1, 000, 000 and 100, 000 replications.
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Figure 4: Annualized volatility computed from the geometric average of the daily realized kernel esti-
mator for companies that were included in the S&P 500 index during the period January 3rd 2005 to
December 31st 2017.

4 Empirical Application to Multistep Forecasting

The estimation problem in multistep forecasting emerges as an important special case in the present

framework. In multistep forecasting there are estimation methods known as the direct forecast and the

iterated forecast, see e.g. Marcellino et al. (2006).6 The focus of this literature has been on the case

with mean square error loss function, see e.g. Cox (1961), Tiao and Tsay (1994), Clements and Hendry

(1996), Bhansali (1997), Ing (2003), Chevillon (2007), and references therein. The direct and iterated

forecasts are closely related to the innate and the likelihood-based estimators, respectively. However,

the crux of this problem is not multistep forecasting, but the fact that different criteria are used for

estimation. This nuance can be overlooked in the standard setting with regression-based forecasts, and

MSE loss function, because both the direct forecast and the iterated forecast are deduced from least

squares estimation problems in this context.

We consider the problem of multistep forecasting, with an empirical application to volatility predic-

tion. Figure 4 displays the daily geometric average of realized volatility for 646 assets from January 3rd,
6The former is also known as the prediction error estimation and the latter as the plug-in forecast.
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2005 to December 31st, 2017.7 We included ticker symbols for which there were at least ten transactions

every day during the sample period.8

We analyze multi-step forecasts of Yt = 1
n

∑
i log(RKi,t) where the objective is given by Linex loss

function with the mean squared error loss function being a special case. We compare innate estimation

and likelihood-based estimation for different forecasting horizons using three model specifications: The

first specification is a restricted AR(22) model, known as the HARmodel, and the other specifications are

standard AR(5) and AR(3) models. The three specifications will be used to illustrate how different levels

of misspecification impact the forecasting performance. We will follow the standard convention and use

direct forecast and iterated forecast to refer to forecasts based on innate estimation and likelihood-based

estimation, respectively.

The direct HAR forecast is obtained by estimating the parameters by

min
µ,βd,βw,βm

T∑
t=1

Lc(Yt − µ− βdYt−h − βwY w
t−h + βmY

m
t−h),

where h is the forecasting horizon and Y w
t = 1

5

∑4
j=0 Yt−j and Y m

t = 1
22

∑21
j=0 Yt−j are the weekly and

monthly averages, respectively. When c = 0 we have the case with mean square error loss function,

where the parameters can be estimated by simple regression,

Yt = µ+ βdYt−h + βwY
w
t−h + βmY

m
t−h + et−h,t, t = 1, . . . , T. (8)

The likelihood-based approach is (for all c and h) deduced from the regression model

Yt = µ+ βdYt−1 + βwY
w
t−1 + βmY

m
t−1 + εt, t = 1, . . . , T, (9)

where the likelihood function is based on the assumption εt ∼ iidN(0, σ2). This model is equivalent to

an AR(22) model, Yt = µ + ϕ1Yt−1 + · · · + ϕ22Yt−22 + εt, subject to the restrictions, ϕ2 = · · · = ϕ5

and ϕ6 = · · · = ϕ22, and the model can be estimated with regression (8) by setting h = 1. From

the estimated model, we obtain the estimate of the conditional mean, Ŷ e
t,t+h = µ̂ + ϕ̂1Ŷ

e
t,t+h−1 + · · · +

ϕ̂h−1Ŷ
e
t,t+1 + ϕ̂hYt + · · ·+ ϕ̂22Yt+h−22, and the corresponding forecast error variance, σ̂2

h, see (B.1), and

7The underlying volatility time series were previously used in Archakov (2016). Our time series is extended with four
years of data (2014-2017), and the data were kindly provided to us by Ilya Archakov.

8The annualized measure of volatility for asset i on day t is given by
√

250 · RKi,t, where RKi,t is the realized kernel
estimator computed from high-frequency returns on asset i (scaled by 100 to express it as a percentage), see Barndorff-
Nielsen et al. (2008). Our analysis is based on the time series, Yt = 1

n

∑
i log(RKi,t), which we converted to the geometric

average,
(∏

i

√
250 · RKi,t

) 1
n = exp{ 1

2
[log(250) + Yt]}, that is displayed in Figure 4.
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the resulting iterated (likelihood-based) forecast is Ŷt,t+h = Ŷ e
t,t+h + c

σ̂2
t,t+h

2 . The forecasts based on the

AR(5) and AR(3) models are derived similarly.

We compare the direct forecast with the iterated forecast in Table 6. Each of the models is estimated

once using 8 years of data, 2005 to 2012, and the remaining five years of data, 2013 to 2017, are used for

out-of-sample evaluation and comparisons. We consider forecasting horizons ranging from h = 1 day to

h = 22 days, and five levels of asymmetry with the LinEx loss function, c ∈ {0, 0.25, 0.5, 1, 1.5}, where

c = 0 corresponds to the mean square error loss function. We report the average loss for the direct

forecast (scaled by 100), and below each of the average losses we report the percentage improvement

offered by the iterated forecasts.9 Positive percentages (shaded green) correspond to cases where the

likelihood-based iterated forecasts dominate the direct forecast, and negative percentages (shaded blue)

are cases where the direct forecast had the smallest sample loss. Cases where the sample losses are

significantly different in a pairwise comparison using a Diebold-Mariano test and a 10% significance

level are indicated with asterisks.

The sample loss tends to be monotonically increasing in the forecasting horizon, h, as one would

expect. For the iterated forecast the loss is strictly increasing in h for all loss functions and all model

specifications. This also holds for the direct forecast with few minor exceptions. For instance the average

MSE loss for the direct HAR forecast with h = 14 is slightly smaller than for h = 13.

In the upper panel of Table 6 we present results based on the HAR specification. Direct and iterated

forecasts are identical if c = 0 and h = 1, but different for any other combination of c and h, and the

relative performance of the two types of forecast clearly depend on h and c. Both h and c induce

discrepancies between the criterion that defines the forecasting objective and the objective used to

estimate parameters for the iterated forecast. The fact that the direct forecast with the HAR model

significantly outperforms the likelihood-based forecast strongly suggests that the HAR model (9) with

Gaussian errors is misspecified. Misspecification takes many forms, including dynamic misspecification

and distributional misspecification, see White (1994). In the present context, dynamic misspecification

refers to the conditional mean implied by autoregressive models being incorrect, while distributional

misspecification would refer to εt not being normally distributed. The two are related because dynamic

misspecification would typically imply distributional misspecification. The results in the upper panel

of Table 6 suggest that the model is dynamically misspecified because the relative performance of the

direct forecasts increases as h increases. The likelihood-based forecasts rely on the Gaussian assumption
9The reported number is defined as (L̄direct − L̄iterated)/[(L̄direct + L̄iterated)/2], where L̄direct is the out-of-sample loss

by the direct forecast (reported in the table) and L̄iterated is the corresponding out-of-sample loss by the iterated forecasts.
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because the adjustment cσ2
h/2 is deduced from the normal distribution. The likelihood-based forecasts

dominate the direct forecasts at shorter horizons when c is large, which suggests that the distributional

misspecification is not the main issue in this application. Imposing the Gaussian distribution greatly

reduce the variance of the parameter estimates relative to direct estimation, which compensates for the

bias induced by misspecification. For the highest level of asymmetry in Table 6, c = 3
2 , the iterated

forecast is significantly better than the direct forecasts for all multi-period forecasts. Only at h = 1 is

the difference not significant.

The middle and lower panels of Table 6 present the corresponding results when the underlying

structure is based on an AR(5) and an AR(3) model. One might expect these specifications to be more

misspecified than the HAR model and that is indeed what the forecasting results suggests. The AR(5)

forecasts are generally inferior to the HAR forecasts and the AR(3) forecasts are even worse. As our

theoretical results predict, misspecification is more harmful to the likelihood-based forecasts than the

direct forecasts based on innate estimation, and this is indeed what we observe in the middle and lower

panels of Table 6. The iterated forecasts are inferior to the direct forecasts with very few exceptions.

Only with a very asymmetric loss functions and a short horizon, such as (c, h) = (3
2 , 1), do we see cases

where the sample performance was (slightly) better for the direct forecast.

The empirical results highlight another important point: At a given level of misspecification, one

cannot necessarily conclude that the likelihood-based forecasts will be inferior to the direct forecast.

The relative performance will depend on the actual objective, e.g. the loss function in a forecasting

problem. So, the direct approach may yield superior forecasts for one objective, and inferior forecasts

for another objective. This is precisely the situation we observe in the upper panel of Table 6.

We can relate these empirical observations to our theoretical results in Section 2. In this application,

the objective is characterized by c and h, and these parameters will define the relative advantages that

likelihood-based estimation will have under correct specification. This advantage is directly related to

the smaller asymptotic variance of the likelihood-based estimator. The difference in asymptotic criterion

risk, 1
2tr{A−1B}− 1

2tr{AÃ−1}, is the theoretical quantity that measures this advantage and this quantity

depends on c and h. The corresponding quantity that embodies the negative impact of misspecification

is given by 1
2tr{Abb′}, and this quantity also depends on c and h. It is therefore not surprising that the

first term dominates the second term for some configurations of (c, h), while the reverse is true for other

configurations of (c, h). This empirical finding is consistent with these theoretical results and shows

that a given level of misspecification can be detrimental for some objectives but relatively harmless for

other objectives.
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5 Conclusion

In this paper we have studied parameter estimation in the situation where the estimated model is

intended to be applied to a different sample than the one used for estimation. The leading example is

the problem of forecasting, where parameters are estimated from currently available observations, while

the objective is to predict features of future observations. However, this structure is not specific to

forecasting. Much empirical research is motivated by applying the estimated model to different samples

than the one used for estimation.

In our framework the objective is defined by a criterion function, and the question is how this

criterion function should be incorporated in the estimation method. The innate estimator is a very

natural estimator because it employs the same criterion for estimation as the objective. If a different

estimator is to be employed, we showed that the notion of coherency – between the estimation criterion

and the actual objective – is essential. A coherent criterion can be crafted from a maximum likelihood

estimator, and we showed that the likelihood-based estimator is asymptotically efficient in the present

context. This result is analogous to, and deduced from, the classical Cramer-Rao bound. The superiority

of the likelihood-based estimator relies on the likelihood function being correctly specified. When the

likelihood function is misspecified, the likelihood-based estimator can be inferior to the innate estimator.

However, the key problem is not that the likelihood-based estimator does not achieve the Cramer-Rao

lower bound under misspecification, but a distortion of the mapping of likelihood parameters to criterion

parameters. The latter is the Achilles heel of the likelihood-based estimator in this context.

The choice between the innate estimator and the likelihood-based estimator entails a trade-off be-

tween robustness and efficiency that arises in many statistical problems. While robustness of the innate

estimator is appealing, we have shown that the likelihood-based estimator can be vastly better than

the innate estimator even in simple problems. The flip-side is that the likelihood-based estimator can

also be vastly inferior to the innate estimator if the underlying statistical model is misspecified. We

showed that the types of misspecification that are most harmful, will vary from one criterion to an-

other. For instance, we presented cases where the likelihood-based estimator is seriously impaired by

a relatively modest level of misspecification, which would be difficult to detect statistically. Similarly,

we documented cases with easy-to-detect levels of misspecification, where the likelihood-based estima-

tor continued to dominate the innate estimator. Our analysis of local-to-correct specification added

further insight about the problem. The likelihood-based estimator dominates the innate estimator at

modest levels of misspecification. The threshold at which the innate estimator becomes superior to the

likelihood-based estimator is context-specific and depends on many factors, including the nature of the
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misspecification and the criterion function, Q. In our application based on the LinEx loss function we

saw that the superiority of the likelihood-based estimator increases with the degree of asymmetry of

the objective. For this reason, it takes a relatively high degree of misspecification before the innate

estimator outperforms the likelihood-based estimator when the asymmetry is large, but relatively little

misspecification when the loss function is symmetric. This shows that the selection problem is not

merely equivalent to misspecification testing. The interaction between the criterion and the type of

misspecification, must be taken into account.

Ultimately, we did not arrive at an unequivocal answer to the question: “How should parameter

estimation be tailored to the objective?” Our theoretical results identified the likelihood-based estimator

as the best choice if the likelihood function is correctly specified. But the likelihood-based estimator is

a precarious choice unless measures are taken to minimize the harmful effects of misspecification. Our

results highlight the benefits of using model diagnostics in the present context, especially diagnostics

that can detect the forms of misspecification that distort the mapping from likelihood-parameters to

criterion parameters. A direct comparison of the innate and likelihood-based estimates, θ̂ and θ(ϑ̃), is a

simple way to guard against the types of misspecification that are most harmful to the objective. This

could be implemented with a Hausman-type test or a score-based approach, where the derivative of

Q(X , θ) is evaluated at θ(ϑ̃). When harmful misspecification is found, it is not obvious if the best way

to proceed is to adopt the innate estimator or to explore another (less misspecified) likelihood function.

An extensive search over specifications can amplify problems related to overfitting that also play an

important role in this context.
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A Appendix: Proof of Analytical Results in Section 2

Proof of Lemma 1. The consistency follows from the existing literature on M -estimators, see e.g.

Amemiya (1985, Theorem 4.1.1). �

Proof of Lemma 2. The Gaussian limit distribution follows directly from Assumption 3, so we only

have to determine the covariance matrix. To simplify notation, write st = s(xt, θ∗) and similarly for

s̃t. By Assumption 3, the asymptotic variance of (2n)−1/2
(∑2n

t=1 s
′
t,
∑2n

t=1 s̃
′
t

)′
is ΣS . It follows that

the asymptotic variance of n−1/2
∑2n

t=1 st is 2B, while the asymptotic variance of n−1/2
∑n

t=1 st and

n−1/2
∑2n

t=n+1 st both equal B. Using the simple identity for the variance of a sum, it follows that the

asymptotic covariance of n−1/2
∑n

t=1 st and n
−1/2

∑2n
t=n+1 st must be zero. The same argument can be

applied to establish the (zero) asymptotic covariance between n−1/2
∑n

t=1 s̃t and n
−1/2

∑2n
t=n+1 st. �

Proof of Lemma 3. Since θ̃ p→ θ0, it follows by Assumptions 1 and 2 that n−1
∑n

t=1 q(xt, θ̃)
p→

E[q(xt, θ0)], which is strictly smaller than E[q(xt, θ∗)], as a consequence of Assumption 2.ii. So that
1
n [Q[(Y, θ̂)−Q(Y, θ̃)] p→ E[q(xt, θ∗)]−E[q(xt, θ0)] > 0 which shows that the divergence is at rate n, and

the result follows. �

Proof of Theorem 1. To simplify notation, we write Qx(θ) in place of Q(X , θ), and similarly Hx(θ) =

H(X , θ), Qy(θ) = Q(Y, θ), Q̃x(θ) = Q̃(X , θ), Sx(θ) =
∑n

t=1 s(xt, θ), and Sy(θ) =
∑2n

t=n+1 s(xt, θ), etc.

Since Q̃ is coherent, we have θ̃ p→ θ0 = θ∗, and by a Taylor expansion we have

Q(Y, θ̃)−Q(Y, θ0) = Sy(θ0)′(θ̃ − θ0) +
1

2
(θ̃ − θ0)′Hy(θ0)(θ̃ − θ0) + op(1).

By Assumption 3 and Lemma 2 we have that n−1H(Y, θ∗)
p→ −A, n−1H̃(X , θ∗)

p→ −Ã, and n−1/2{S̃x(θ), Sy(θ)}
d→

{B̃1/2Zx, B
1/2Zy} where Zx and Zy are independent and both distributed as N(0, I). The result

Q(Y, θ̃) − Q(Y, θ) d→ Z ′yB
1/2ÃB̃1/2Zx + 1

2Z
′
xB̃

1/2Ã−1[−A]Ã−1B̃1/2Zx now follows. The expectation

of the first term is zero, and the final result follows by

tr{EZ ′xB̃1/2Ã−1AÃ−1B̃1/2Zx} = tr{Ã−1AÃ−1B̃1/2EZxZ ′xB̃1/2},

and using that EZxZ ′x = I. �

Proof of Lemma 4. Let P denote the true distribution. Consider the parameterized model, {Pϑ :

ϑ ∈ Ξ}, which is correctly specified so that P = Pϑ0 for some ϑ0 ∈ Ξ. Since θ∗ is defined to be the

maximizer of

E[Q(Y, θ)] = Eϑ0 [Q(Y, θ)] =

∫
Q(Y, θ)dPϑ0 ,

it follows that θ0 is just a function of ϑ0, i.e., θ0 = θ(ϑ0). �

33



Proof of Theorem 2. Consider first the case where ϑ = θ. From Theorem 1 and a slight variation of

its proof it follows that

Q(Y, θ̂)−Q(Y, θ̃) d→ +Z ′yB
1/2A−1B1/2Zx −

1

2
Z ′xB

1/2A−1B1/2Zx

−Z ′yB1/2Ã−1B̃1/2Z̃x +
1

2
Z̃ ′xB̃

1/2Ã−1AÃ−1B̃1/2Z̃x,

where Zy, Zx, and Z̃x are all distributed as N(0, I), with Zy independent of (Zx, Z̃x). This defines the

random variable ξ. Two of the terms vanish after taking the expected value, which yields

−1

2
tr{A−1B}+

1

2
tr{Ã−1AÃ−1B̃} =

1

2
tr{AÃ−1 −A−1B},

where we have used the information matrix equality, Ã = B̃. Manipulating this expression leads to

1

2
tr
{
A1/2(Ã−1 −A−1BA−1)A1/2

}
≤ 0,

where the inequality follows from the fact that Ã−1 = B̃−1 is the asymptotic covariance matrix of the

MLE whereas A−1BA−1 is the asymptotic covariance of the innate estimator, so that A−1BA−1− B̃−1

is positive semi-definite by the Cramer-Rao bound. These arguments are valid whether θ has the

same dimension as ϑ or not, because we can reparametrize the model in ϑ 7→ (θ, γ), which results in

block-diagonal information matrices. This is achieved with

γ(ϑ) = τ(ϑ)− ΣτθΣ
−1
θθ θ(ϑ),

where  Σθθ Σθτ

Στθ Σττ

 ,

denotes the asymptotic covariance of the MLE for the parametrization (θ, τ). �

Proof of Corollary 1.The proof is analogous to that of Theorem 2, albeit the comparison in question

is here

−tr{Ǎ−1AǍ−1B̌}+ tr{Ã−1AÃ−1B̃} = tr
{
A1/2(Ã−1 − Ǎ−1B̌Ǎ−1)A1/2

}
≤ 0,

where Ǎ and B̌ are the “information” matrices associated with θ̌. �

Proof of Theorem 3. With Pn → Pϑ0 we have θ(ϑ0) = θ∗. Thus with θ(n)
0 = θ(ϑ

(n)
0 ) and a Taylor

expansion of Q(Y, θ̃) about Q(Y, θ∗) we find the limit distribution of Q(Y, θ̃) − Q(Y, θ∗) to be given
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from

Sy(θ∗)
′(θ̃ − θ(n)

0 + θ
(n)
0 − θ∗) + 1

2(θ̃ − θ(n)
0 + θ

(n)
0 − θ∗)′Hy(θ∗)(θ̃ − θ(n)

0 + θ
(n)
0 − θ∗).

The expectation of the first term is zero, and the limit distribution of the second term is

1
2(Ã−1B̃1/2Zx + b)′[−A](Ã−1B̃1/2Zx + b),

so that the asymptotic criterion risk is

1
2E(Ã−1B̃1/2Zx + b)′A(Ã−1B̃1/2Zx + b) = 1

2tr{AB̃−1}+ 1
2tr{Abb′} = 1

2tr{A(B̃−1 + bb′}

where we used that EZx = 0, EZxZ ′x = I and the information matrix equality Ã = B̃, which also holds

under local-to-correct specification. �

Proof of Theorem 4. With y = B̃1/2b we have b′Ab/b′B̃b = y′B̃−1/2AB̃−1/2y/y′y which is bounded

by the smallest and largest eigenvalues of B̃−1/2AB̃−1/2. If λ is a solution to |B̃−1/2AB̃−1/2 − λI| = 0

then λ also solves |A− λB̃| = 0, and the result follows. �

B Appendix: Proof of Auxiliary Results

B.1 Derivations Related to the Linex Case With Correct Specification

The expression for A follows by

A = E[−hi(Xi, θ0)] = E exp{c(Xi − θ0)}

= E exp{c(Xi − µ)− c2σ2

2
}

= exp{− c2σ2

2 + 1
2c

2σ2} = 1,

where the second last equality follows by using that the moment generating function for V ∼ N(λ, τ2)

is mgf(t) = E(exp{tV }) = exp{λt+ 1
2τ

2t2}, and setting λ = − c2σ2

2 , τ2 = c2σ2, and t = 1.
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For B we note that

E[si(Xi, θ0)]2 = c−2E[exp{2c(Xi − θ0)} − 2 exp{c(Xi − θ0)}+ 1]

= c−2E[exp{2c(Xi − µ)− c2σ2)} − 2 exp{c(Xi − µ)− c2σ2

2 }+ 1]

= c−2[exp{−c2σ2 + 2c2σ2} − 2 exp{− c2σ2

2 + c2σ2

2 }+ 1]

= c−2[exp{c2σ2} − 1].

Here we have used the expression for the moment generating function for a Gaussian random variable

twice.

B.2 Proof of (6) in Section 3.2

Lemma B.1. Suppose that X ∼ NIG(λ, δ, α, β) and let θ0 = λ + δβ
γ + c

2δ
α2

γ3
, where γ =

√
α2 − β2.

Then

θ∗ = λ+
δ

c

[√
α2 − β2 −

√
α2 − (β + c)2

]
,

solves minθ E[exp{c(X − θ)} − c(X − θ)− 1]. Moreover, θ∗ − θ0 → 0 if either (a) c→ 0; or (b) α→∞

with σ2 = δ/α constant and β = 0.

Proof. Using the moment generating function for the NIG-distribution the objective is to minimize

exp{−cθ} exp{cλ+ δ(γ −
√
α2 − (β + c)2)} − c(λ+ δβ

γ − θ),

with respect to θ. The first order conditions are therefore

−c exp{−cθ} exp{cλ+ δ(γ −
√
α2 − (β + c)2)}+ c = 0,

hence by rearranging and taking the logarithm, we have

−cθ + cλ+ δ(γ −
√
α2 − (β + c)2) = 0,

and rearranging yields the first result.

By the l’Hospital rule we find

lim
c→0

√
α2−β2−

√
α2−(β+c)2

c =
limc→0 2(β+c) 1

2
[α2−(β+c)2]−1/2

1 = β/γ,
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which proves that θ∗ → λ+ δβ
γ as c→ 0.

With β = 0 we have γ = α, δ = σ2α = var(X) and λ = µ = E(X), so that

θ∗ = µ+
σ2α

c

[√
α2 −

√
α2 − c2

]
= µ+

σ2

c
1−
√

1−xc2
x ,

where x = α−2. The limit as α→∞, i.e. x→ 0, is by the l’Hospital rule

lim
α→∞

θ0 = µ+ lim
x→0

σ2

c

1
2c

2(1− xc2)−1/2

1
= µ+ c

σ2

2
,

which completes the proof.

Theorem B.1. Consider the NIG(λ, δ, α, β), where λ = µ − δβ/γ, δ = σ2γ3/α2 and β = bα1−a for

a ∈ (1
3 , 1] and b ∈ R. Then

NIG(λ, δ, α, β)→ N(µ, σ2), as α→∞

Proof. Define x = α−2 so that α = x−1/2 and β = bx−(1−a)/2 and note that β/α = bα−a = bxa/2 so

that
γ

α
=
√

1− (β/α)2 =
√

1− b2xa.

Now consider the characteristic function for the NIG(λ, δ, α, β) which is given by

exp{iλt+ δ(γ −
√
α2 − (β + it)2}.

With δ = σ2γ3/α2 and λ = µ − δβ/γ = µ − σ2(γ/α)2β, the first part of the characteristic function is

given by

λ = µ− σ2(1− b2xa)bx−
1−a
2 = µ− σ2bx−

1−a
2 + σ2b3x

3a−1
2 .

We observe that the last term vanishes as x → 0 provided that a > 1
3 , while the second term,

itσ2bx−
1−a
2 = itσ2bx

1+a
2 /x, will be accounted for below.

The second part of the characteristic function equals

δ(γ −
√
α2 − (β + it)2) = σ2 ( γα)4 − ( γα)3

√
1− (β/α+ it/α)2

α−2
,
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which, in terms of x, is expressed as

σ2 (1− b2xa)2 − (1− b2xa)3/2
√

1− (bxa/2 + itx1/2)2

x
.

Including the second term from the first part of the CF, we arrive at,

σ2−itbx
1+a
2 + (1− b2xa)2 − (1− b2xa)3/2

√
1− (bxa/2 + itx1/2)2

x
,

and applying l’Hospital’s rule as x→ 0, we find (apart for the scale σ2)

−itb1+a
2 x

a−1
2 − 2ab2xa−1 + 3

2ab
2xa−1 − 1

2(−b2xa−1 − 2itb1+a
2 x

a−1
2 + t2) = −1

2 t
2.

So the CF for the NIG converges to exp{iµt− σ2

2 t
2} as x→ 0, which is the CF for N(µ, σ2).

Corollary B.1. NIG(µ, σ2α, α, 0)→ N(µ, σ2), as α→∞.

Proof. The results follow from Theorem B.1, or directly by observing that the CF for NIG(µ, σ2α, α, 0)

is

exp{iµt+ σ2α2(1−
√

1 + α−2t2}.

Now by l’Hospital’s rule note that ∂
√

1 + xt2/∂x = 1
2 t

2(1+xt2)−1/2, so by setting x = α−2 and applying

L’Hospital rule we find

lim
x→0

σ2(1−
√

1 + xt2)

x
=

limx→0[−1
2 t

2(1 + xt2)−1/2]

1
= −1

2
σ2t2.

Proof of (7). From ξ = (1 + δγ)−1/2 and χ = −ξ βα , we note that 1/ξ2 − 1 = (1 + δγ) = δγ = γ4/α2

and ξ2 − χ2 = ξ2(1− β2/α2) = ξ2α−2γ2 so that

ξ

√
1− ξ2

ξ2 − χ2
=

√
1− ξ2

ξ

1

(1− β2

α2 )
=

γ2/α

α−2γ2
= α.

Similarly,

−χ
√

1− ξ2

ξ2 − χ2
= −χ

ξ
ξ

√
1− ξ2

ξ2 − χ2
= −
−ξ βα
ξ

α = β,

which proves the identities in (7). �
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B.3 Forecast error variance for autoregression

The optimal forecast under LinEx loss function entails an adjustment that is proportional to σ2
h =

var(Yt+h|Ft) under normality, see (4). In our empirical application, we seek the likelihood-based estimate

of σ2
h, that is based on autoregressive models (The HAR model corresponds to a restricted AR(22)

model). Consider the autoregression Yt = µ + ϕ1Yt−1 + · · · + ϕpYt−p + εt, εt ∼ iidN(0, σ2
ε), expressed

in the companion form Y ∗t = µ∗ + ΦY ∗t−1 + ε∗t , where

Y ∗t =


Yt
...

Yt−p+1

 , Φ∗ =


ϕ1 ϕ2 · · · ϕp

1 0 · · · 0

. . . . . .
...

0 1 0


, ε∗t =


εt

0
...

0


,

and µ∗ = (µ′, 0, . . . , 0)′. It follows that

Y ∗t+h = ΦhY ∗t + (I + Φ + · · ·+ Φh−1)µ∗ + (ε∗t+h + Φε∗t+h−1 + · · ·Φh−1ε∗t+h−(h−1)),

and that Et(Yt+h) = a0,h+a1,hYt+ · · ·+ap,hYt+1−p, where a0,h is given as µ times the upper-left element

of (I + Φ + · · ·+ Φh−1) = µ(1 + [Φ]1,1 + · · ·+ [Φh−1]1,1), and the constants, ai,h, i = 1, . . . , p, are given

from the first row of Φh. Thus, σ2
h is given by the variance of the first element of ε∗t+h + Φε∗t+h−1 +

· · ·Φh−1ε∗t+h−(h−1), which can be expressed as εt+h + [Φ]1,1εt+h−1 + · · · + [Φh−1]1,1εt+1. So, σ2
1 = σ2

ε ,

σ2
2 = (1 + ϕ2

1)σ2
ε , σ2

3 = (1 + ϕ2
1 + (ϕ2

1 + ϕ2)2)σ2
ε , and the general expression is given by

σ2
h = (1 + [Φ]21,1 + · · ·+ [Φh−1]21,1)σ2

ε , h = 1, 2, . . . . (B.1)

The iterated forecast under linex loss is given by Êt(Yt+h)+ c
2 σ̂

2
h, which is computed with the expressions

for Et(Yt+h) and σ2
h using the maximum likelihood estimates of µ, ϕ1, . . . , ϕp, and σ2

ε .

C Appendix: Details Concerning the Simulations Designs

C.1 LinEx Loss

Proposition C.1 (Invariance of LinEx Simulation Study). The simulation study based on Xi ∼

iidN(µ, σ2) and LinEx loss Ld, is equivalent to that based on Xi ∼ iidN(0, 1) and LinEx loss Lc.

Our simulation design is based on random variables with mean zero and unit variance. This is
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without loss of generality because a simulation design based on random variables Xi with mean µ,

variance σ2 and asymmetry parameter d, is equivalent to a design based on Zi = (Xi − µ)/σ with

asymmetry parameter c = σd. To establish this result we first show that the estimator, θ̌d, deduced

from LinEx loss, Ld, and the sample X = (X1, . . . , Xn), is linearly related to the estimator θ̌c, deduced

from LinEx loss, Lc, and the sample Z = (Z1, . . . , Zn), by

θ̌d(X ) = µ+ σθ̌c(Z). (C.1)

For the innate estimator this follows by

θ̂d(X ) =
1

d
log{ 1

n

∑
exp(dXi)} =

1

d
log{ 1

n

∑
exp(dσZi) exp(dµ)}

= µ+
1

d
log{ 1

n

∑
exp(cZi)} = µ+ σθ̂c(Z),

and similarly for the likelihood-based estimator we observed that

θ̃d(X ) = X̄ + d
2

1
n

∑
i

(Xi − X̄)2 = µ+ σZ̄ + d
2

1
n

∑
i

σ2(Zi − Z̄)2 = µ+ σθ̃c(Z).

Hence

d{Yi − θ̌d(X )} = d{σ Yi−µσ + µ− µ− σθ̌c(Z)} = c{Yi−µσ − θ̌c(Z)},

which proves that,

Ld(Yi − θ̌d(X )) = σ2Lc(
Yi−µ
σ − θ̌c(Z)).

Since the scale, σ2, is common for all estimators that satisfy (C.1), their relative performance is unaf-

fected.

Details about the simulation study

We draw 2n independent observations N(0, 1). The first n observations (in-sample) are used to compute

the estimators θ̂ and θ̃. The remaining n observation are used to compute the out-of-sample losses,

including the losses resulting from the ideal parameter value θ∗. This is done in 500,000 independent

replications, and the properties of θ̂ and θ̃ are evaluated by averaging over the simulations. We have

used n = 100 and n = 1, 000 in the finite sample analysis. A range, c ∈ {0; 0.25; 0.5; 1; 1.5; 2; 2.5}, of

values for the asymmetry parameter is used.
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C.2 LinEx under NIG distribution

The simulations with the normal inverse Gaussian (NIG) distribution represent a case with local mis-

specification. We use random variables drawn from NIG(λ, δ, α, β), that are normalized to have mean

zero and unit variance. This is achieved by setting δ = γ3/α2 and λ = −δβ/γ where γ =
√
α2 − β2,

and this standardized NIG distribution may be parameterized by:

ξ =
1√

1 + δγ
and χ = ξ

β

α
.

An asymmetric distribution is obtained with χ = −ξ3/2, leaving one free parameter, where the Gaussian

case arises as ξ → 0. This facilitates the setup of the local-misspecification experiments where an increase

in the level of the bias will be immediately mirrored by a modification of ξ. The advantage of this setup

is that the NIG optimal predictor is always computable as long as 0 ≤ ξ < 1. The values of the

parameters λ, δ, α, β are then deduced from the relations above and the standardization constraints.

To set the misspecification level in the simulations design, we first deduce the rate of convergence of

ξ to zero. By setting the LinEx asymmetry coefficient to 1, we solve for ξ so that
√
n(θ0 − θ∗)− b = 0.

From (4) and (6), and the normalizations µ = 0 and σ = 1, we observe that θ0 − θ∗ = 1
2 − λ −

δ
[
γ −

√
α2 − (β + 1)2

]
. Next using that χ = −ξ3/2 and defining aξ =

√
1+ξ
1−ξ we find that

α = ξ

√
1−ξ2

ξ2−χ2 = ξ

√
1−ξ2

ξ2−ξ3 = 1
ξ

√
1−ξ2

(1−ξ)2 =
aξ
ξ ,

β = χ

√
1−ξ2

ξ2−χ2 = − 1√
ξ

√
1−ξ2

1−ξ = − aξ√
ξ
,

γ =
√

1−ξ2
ξ2−χ2 = 1

ξ

√
1−ξ2
1−ξ =

√
1+ξ
ξ2

=
√

1−ξ
ξ

√
1−ξ2

1−ξ =
aξ
√

1−ξ
ξ ,

so that δ = γ3/α2 = aξ
ξ2(1−ξ)3/2

ξ3
= aξ

(1−ξ)3/2
ξ =

√
1 + ξ (1−ξ)

ξ =
√

1−ξ2
ξ

√
1−ξ
ξ and λ = −δβ/γ =

aξ
1−ξ√
ξ

=
√

1−ξ2
ξ . Consequently,

θ0 − θ∗ = 1
2 − aξ

1−ξ√
ξ
− aξ (1−ξ)3/2

ξ

[
aξ
√

1−ξ
ξ −

√
a2
ξ/ξ

2 − (1− aξ/
√
ξ)2

]
= 1

2 −
√

1−ξ2
ξ −

√
1−ξ2
ξ

√
1−ξ
ξ

[√
1+ξ
ξ2
−
√

1+ξ
1−ξ/ξ

2 − (1−
√

1+ξ
1−ξ/

√
ξ)2

]
= 1

2ξ
3/2 − 1

8ξ
2 +O(ξ3),

equating with n−1/2b implies ξ ' (2b)
2
3n−

1
3 . So in our simulations design we set ξ = d × n−1/3 where

d defines the degree of local-misspecification, and we let d vary from 0 (correctly specified model) to 3.
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Then we proceed with the following steps:

1. Given ξ we compute the parameters (λ, δ, α, β) using the expressions provided in Section 3.2.

2. Draw a sample of size 2n from the NIG(λ, δ, α, β) distribution.

3. The estimators θ̂ and θ̃ are computed with (3) and (5) using the first n observations, while θ∗ is

computed with (6).

4. The criterion is then evaluated out-of-sample using the last n observations, using θ̂, θ̃, and θ∗.

5. Repeat steps 2-4 for the desired number of repetitions (we use 100, 000 and 500, 000 in some cases).

6. Evaluate the out-of-sample properties by averaging over repetitions.

For the design resembling the asymptotic case, we use the sample size n = 1, 000, 000, and we have

verified that n = 100, 000 produced very similar results. The levels of asymmetry used are c ∈

{0; 0.25; 0.5; 1; 2}. A finite sample analysis with n = 200 is also performed.

In this where ξ ∝ n−1/3, we have χ = −ξ3/2 ∝ −n−1/2,

α =

√
1− ξ2

ξ2 − χ2
∝ n−1/3

√
1− n−2/3

n−2/3 − n−1
∝ n1/3,

and β = αχ/ξ ∝ −n
1
3−

1
2 +

1
3 = −n1/6.
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